123 research outputs found

    Dielectric barrier plasma discharge exsolution of nanoparticles at room temperature and atmospheric pressure Dataset

    Get PDF
    The dataset that corresponds to the results reported in the paper are included within this record as an Excel file and with tabs corresponding to each figure. Additional results and raw data underlying this work (full set of microscopy images and size analysis and statistics, high resolution deconvoluted x-ray photoelectron spectra and control magnetic measurements) are available in the Supporting Information (in PDF format) or on request following instructions provided here. This work has been supported by EPSRC through the UK Catalysis Hub (EP/R027129/1) and the Emergent Nanomaterials-Critical Mass Initiative (EP/R023638/1, EP/R023921/1, EP/R023522/1, EP/R008841/1) as well as the Royal Society (IES\R2\212049). F.F. gratefully acknowledges support from the National Research Council of Italy (2020 STM program). I.S.M. acknowledges funding from the Royal Academy of Engineering through a Chair in Emerging Technologies Award entitled “Engineering Chemical Reactor Technologies for a Low-Carbon Energy Future” (Grant CiET1819\2\57). KK acknowledges funding from the Henry Royce Institute (EP/X527257/1)

    Work-life balance in the police: the development of a self-management competency framework

    Get PDF
    Purpose Addressing a gap in the current work–life balance (WLB) literature regarding individual-focused approaches to inform interventions, we elicited behaviors used to self-manage WLB to draw up a competency-based WLB framework for relevant learnable knowledge, skills, and abilities (KSAs; Hoffmann, Eur J Ind Train 23:275–285, 1999) and mapping this against extant WLB frameworks. Design/Methodology/Approach Our participants were from a major UK police force, which faces particular challenges to the work–life interface through job demands and organizational cutbacks, covering a range of operational job roles, including uniformed officers and civilian staff. We took a mixed methods approach starting with semi-structured interviews to elicit 134 distinct behaviors (n = 20) and used a subsequent card sort task (n = 10) to group these into categories into 12 behavioral themes; and finally undertook an online survey (n = 356) for an initial validation. Findings Item and content analysis reduced the behaviors to 58, which we analyzed further. A framework of eight competencies fits the data best; covering a range of strategies, including Boundary Management, Managing Flexibility, and Managing Expectations. Implications The WLB self-management KSAs elicited consist of a range of solution-focused behaviors and strategies, which could inform future WLB-focused interventions, showing how individuals may negotiate borders effectively in a specific environment. Originality/Value A competence-based approach to WLB self-management is new, and may extend existing frameworks such as Border Theory, highlighting a proactive and solution-focused element of effective behaviors

    Basal LAT-diacylglycerol-RasGRP1 Signals in T Cells Maintain TCRα Gene Expression

    Get PDF
    In contrast to the well-characterized T cell receptor (TCR) signaling pathways that induce genes that drive T cell development or polarization of naïve CD4 T cells into the diverse TH1, TH2, TH17 and Treg lineages, it is unclear what signals maintain specific gene expression in mature resting T cells. Resting T cells residing in peripheral lymphoid organs exhibit low-level constitutive signaling. Whereas tonic signals in B cells are known to be critical for survival, the roles of tonic signals in peripheral T cells are unknown. Here we demonstrate that constitutive signals in Jurkat T cell lines are transduced via the adapter molecule LAT and the Ras exchange factor RasGRP1 to maintain expression of TCRα mRNA and surface expression of the TCR/CD3 complex. Independent approaches of reducing basal activity through the LAT-diacylglycerol-RasGRP pathway led to reduced constitutive Ras-MEK-ERK signals and decreased TCRα mRNA and surface TCR expression in Jurkat cells. However, loss of TCR expression takes several days in these cell line experiments. In agreement with these in vitro approaches, inducible deletion of Lat in vivo results in reduced TCRα mRNA- and surface TCR- expression in a delayed temporal manner as well. Lastly, we demonstrate that loss of basal LAT-RasGRP signals appears to lead to silencing or repression of TCRα transcription. We postulate that basal LAT-diacylglycerol-RasGRP signals fulfill a regulatory function in peripheral T lymphocytes by maintaining proper gene expression programs

    Insect pathogens as biological control agents: back to the future

    Get PDF
    The development and use of entomopathogens as classical, conservation and augmentative biological control agents have included a number of successes and some setbacks in the past 15 years. In this forum paper we present current information on development, use and future directions of insect-specific viruses, bacteria, fungi and nematodes as components of integrated pest management strategies for control of arthropod pests of crops, forests, urban habitats, and insects of medical and veterinary importance. Insect pathogenic viruses are a fruitful source of MCAs, particularly for the control of lepidopteran pests. Most research is focused on the baculoviruses, important pathogens of some globally important pests for which control has become difficult due to either pesticide resistance or pressure to reduce pesticide residues. Baculoviruses are accepted as safe, readily mass produced, highly pathogenic and easily formulated and applied control agents. New baculovirus products are appearing in many countries and gaining an increased market share. However, the absence of a practical in vitro mass production system, generally higher production costs, limited post application persistence, slow rate of kill and high host specificity currently contribute to restricted use in pest control. Overcoming these limitations are key research areas for which progress could open up use of insect viruses to much larger markets. A small number of entomopathogenic bacteria have been commercially developed for control of insect pests. These include several Bacillus thuringiensis sub-species, Lysinibacillus (Bacillus) sphaericus, Paenibacillus spp. and Serratia entomophila. B. thuringiensis sub-species kurstaki is the most widely used for control of pest insects of crops and forests, and B. thuringiensis sub-species israelensis and L. sphaericus are the primary pathogens used for medically important pests including dipteran vectors,. These pathogens combine the advantages of chemical pesticides and microbial control agents (MCAs): they are fast acting, easy to produce at a relatively low cost, easy to formulate, have a long shelf life and allow delivery using conventional application equipment and systemics (i.e. in transgenic plants). Unlike broad spectrum chemical pesticides, B. thuringiensis toxins are selective and negative environmental impact is very limited. Of the several commercially produced MCAs, B. thuringiensis (Bt) has more than 50% of market share. Extensive research, particularly on the molecular mode of action of Bt toxins, has been conducted over the past two decades. The Bt genes used in insect-resistant transgenic crops belong to the Cry and vegetative insecticidal protein families of toxins. Bt has been highly efficacious in pest management of corn and cotton, drastically reducing the amount of broad spectrum chemical insecticides used while being safe for consumers and non-target organisms. Despite successes, the adoption of Bt crops has not been without controversy. Although there is a lack of scientific evidence regarding their detrimental effects, this controversy has created the widespread perception in some quarters that Bt crops are dangerous for the environment. In addition to discovery of more efficacious isolates and toxins, an increase in the use of Bt products and transgenes will rely on innovations in formulation, better delivery systems and ultimately, wider public acceptance of transgenic plants expressing insect-specific Bt toxins. Fungi are ubiquitous natural entomopathogens that often cause epizootics in host insects and possess many desirable traits that favor their development as MCAs. Presently, commercialized microbial pesticides based on entomopathogenic fungi largely occupy niche markets. A variety of molecular tools and technologies have recently allowed reclassification of numerous species based on phylogeny, as well as matching anamorphs (asexual forms) and teleomorphs (sexual forms) of several entomopathogenic taxa in the Phylum Ascomycota. Although these fungi have been traditionally regarded exclusively as pathogens of arthropods, recent studies have demonstrated that they occupy a great diversity of ecological niches. Entomopathogenic fungi are now known to be plant endophytes, plant disease antagonists, rhizosphere colonizers, and plant growth promoters. These newly understood attributes provide possibilities to use fungi in multiple roles. In addition to arthropod pest control, some fungal species could simultaneously suppress plant pathogens and plant parasitic nematodes as well as promote plant growth. A greater understanding of fungal ecology is needed to define their roles in nature and evaluate their limitations in biological control. More efficient mass production, formulation and delivery systems must be devised to supply an ever increasing market. More testing under field conditions is required to identify effects of biotic and abiotic factors on efficacy and persistence. Lastly, greater attention must be paid to their use within integrated pest management programs; in particular, strategies that incorporate fungi in combination with arthropod predators and parasitoids need to be defined to ensure compatibility and maximize efficacy. Entomopathogenic nematodes (EPNs) in the genera Steinernema and Heterorhabditis are potent MCAs. Substantial progress in research and application of EPNs has been made in the past decade. The number of target pests shown to be susceptible to EPNs has continued to increase. Advancements in this regard primarily have been made in soil habitats where EPNs are shielded from environmental extremes, but progress has also been made in use of nematodes in above-ground habitats owing to the development of improved protective formulations. Progress has also resulted from advancements in nematode production technology using both in vivo and in vitro systems; novel application methods such as distribution of infected host cadavers; and nematode strain improvement via enhancement and stabilization of beneficial traits. Innovative research has also yielded insights into the fundamentals of EPN biology including major advances in genomics, nematode-bacterial symbiont interactions, ecological relationships, and foraging behavior. Additional research is needed to leverage these basic findings toward direct improvements in microbial control

    Association of IFIH1 and pro-inflammatory mediators: Potential new clues in SLE-associated pathogenesis

    Get PDF
    This study was supported by the National Institute of Allergy, Immunology and Infectious Diseases, Office of Research on Women’s Health, National Institute of General Medical Sciences, and the National Institute of Arthritis, Musculoskeletal and Skin Diseases under award numbers U01AI101934, R01AI024717, U19AI082714, U54GM104938, P30GM103510, P30GM110766, P30AR053483, RC1AR058554, U34AR067392, and HHSN266200500026C. This publication is the sole responsibility of the authors and does not represent the views of the National Institutes of Health.Antiviral defenses are inappropriately activated in systemic lupus erythematosus (SLE) and association between SLE and the antiviral helicase gene, IFIH1, is well established. We sought to extend the previously reported association of pathogenic soluble mediators and autoantibodies with mouse Mda5 to its human ortholog, IFIH1. To better understand the role this gene plays in human lupus, we assessed association of IFIH1 variants with soluble mediators and autoantibodies in 357 European-American SLE patients, first-degree relatives, and unrelated, unaffected healthy controls. Association between each of 135 genotyped SNPs in IFIH1 and four lupus-associated plasma mediators, IL-6, TNF-α, IFN-β, and IP-10, were investigated via linear regression. No significant associations were found to SNPs orthologous to those identified in exon 13 of the mouse. However, outside of this region there were significant associations between IL-6 and rs76162067 (p = 0.008), as well as IP-10 and rs79711023 (p = 0.003), located in a region of IFIH1 previously shown to directly influence MDA-5 mediated IP-10 and IL-6 secretion. SLE patients and FDRs carrying the minor allele for rs79711023 demonstrated lower levels of IP-10, while only FDRs carrying the minor allele for rs76162067 demonstrated an increased level of IL-6. This would suggest that the change in IP-10 is genotypically driven, while the change in IL-6 may be reflective of SLE transition status. These data suggest that IFIH1 may contribute to SLE pathogenesis via altered inflammatory mechanisms.Yeshttp://www.plosone.org/static/editorial#pee

    Synthetic Nanoparticles for Vaccines and Immunotherapy

    Get PDF
    The immune system plays a critical role in our health. No other component of human physiology plays a decisive role in as diverse an array of maladies, from deadly diseases with which we are all familiar to equally terrible esoteric conditions: HIV, malaria, pneumococcal and influenza infections; cancer; atherosclerosis; autoimmune diseases such as lupus, diabetes, and multiple sclerosis. The importance of understanding the function of the immune system and learning how to modulate immunity to protect against or treat disease thus cannot be overstated. Fortunately, we are entering an exciting era where the science of immunology is defining pathways for the rational manipulation of the immune system at the cellular and molecular level, and this understanding is leading to dramatic advances in the clinic that are transforming the future of medicine.1,2 These initial advances are being made primarily through biologic drugs– recombinant proteins (especially antibodies) or patient-derived cell therapies– but exciting data from preclinical studies suggest that a marriage of approaches based in biotechnology with the materials science and chemistry of nanomaterials, especially nanoparticles, could enable more effective and safer immune engineering strategies. This review will examine these nanoparticle-based strategies to immune modulation in detail, and discuss the promise and outstanding challenges facing the field of immune engineering from a chemical biology/materials engineering perspectiveNational Institutes of Health (U.S.) (Grants AI111860, CA174795, CA172164, AI091693, and AI095109)United States. Department of Defense (W911NF-13-D-0001 and Awards W911NF-07-D-0004

    The idea of Christian chivalry in the chronicles of the Teutonic Order

    No full text
    SIGLEAvailable from British Library Lending Division - LD:D54124/85 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    • …
    corecore