1,664 research outputs found
The early medieval origin of Perth, Scotland
The radiocarbon results (and Bayesian modeling) of 15 samples of carbonized food residues removed from the external surface of rim sherds of cooking pots indicate that shellyware pottery first appeared in Perth, Scotland, around cal AD 9101020 (95% probability) and that it had disappeared by cal AD 10201140 (95% probability). Previously, it had been suggested that this pottery could not date to before AD 1150. These data, together with 14C analyses carried out on leather artifacts and a sample of wattle from a ditch lining, also demonstrate that there was occupation in Perth about 100 yr or more prior to the granting of royal burgh status to Perth in the 1120s
Spirituality and attitudes towards nature in the Pacific Islands: insights for enabling climate - change adaptation
A sample of 1226 students at the University of the South Pacific, the premier tertiary institution in the Pacific Islands, answered a range of questions intended to understand future island decision-makers’ attitudes towards Nature and concern about climate change. Questions asking about church attendance show that the vast majority of participants have spiritual values that explain their feelings of connectedness to Nature which in turn may account for high levels of pessimism about the current state of the global/Pacific environment. Concern about climate change as a future livelihood stressor in the Pacific region is ubiquitous at both societal and personal levels. While participants exhibited a degree of understanding matching objective rankings about the vulnerability of their home islands/countries, a spatial optimism bias was evident in which ‘other places’ were invariably regarded as ‘worse’. Through their views on climate change concern, respondents also favoured a psychological distancing of environmental risk in which ‘other places’ were perceived as more exposed than familiar ones. Influence from spirituality is implicated in both findings. Most interventions intended to reduce exposure to environmental risk and to enable effective and sustainable adaptation to climate change in the Pacific Islands region have failed to acknowledge influences on decision making of spirituality and connectedness to Nature. Messages that stress environmental conservation and stewardship, particularly if communicated within familiar and respected religious contexts, are likely to be more successful than secular ones
The Five Factor Model of personality and evaluation of drug consumption risk
The problem of evaluating an individual's risk of drug consumption and misuse
is highly important. An online survey methodology was employed to collect data
including Big Five personality traits (NEO-FFI-R), impulsivity (BIS-11),
sensation seeking (ImpSS), and demographic information. The data set contained
information on the consumption of 18 central nervous system psychoactive drugs.
Correlation analysis demonstrated the existence of groups of drugs with
strongly correlated consumption patterns. Three correlation pleiades were
identified, named by the central drug in the pleiade: ecstasy, heroin, and
benzodiazepines pleiades. An exhaustive search was performed to select the most
effective subset of input features and data mining methods to classify users
and non-users for each drug and pleiad. A number of classification methods were
employed (decision tree, random forest, -nearest neighbors, linear
discriminant analysis, Gaussian mixture, probability density function
estimation, logistic regression and na{\"i}ve Bayes) and the most effective
classifier was selected for each drug. The quality of classification was
surprisingly high with sensitivity and specificity (evaluated by leave-one-out
cross-validation) being greater than 70\% for almost all classification tasks.
The best results with sensitivity and specificity being greater than 75\% were
achieved for cannabis, crack, ecstasy, legal highs, LSD, and volatile substance
abuse (VSA).Comment: Significantly extended report with 67 pages, 27 tables, 21 figure
Probing magnetic order in EELS of chromite spinels using both multiple scattering (FEFF8.2) and DFT (WIEN2k)
The electron energy loss near edge structure on the O K-edge from chromite spinels contains fine structure from the hybridisation of the O p-orbitals and the Cr d-orbitals. Unlike the aluminates, a non-spin polarised calculation of this fine structure differs significantly from experimental observations. This is due to the large magnetic moment on the Cr. Calculations using simplified collinear ordering of the spins and the local spin density approximation give much improved agreement. A real space multiple scattering formalism and a reciprocal space density functional formalism give results in substantial agreement. In general, the actual spin arrangement of these chromites is not known since they are typically frustrated magnetic systems with ordering temperatures in the 10–20 K range. The calculations are based on the hypothesis that dynamic short range order persists to room temperature over the time scale of the interaction with the fast electron. However, it is possible that the observed effects are due to the strong paramagnetism present at room temperatures but which it is not possible to simulate accurately at present
Self-trapping transition for nonlinear impurities embedded in a Cayley tree
The self-trapping transition due to a single and a dimer nonlinear impurity
embedded in a Cayley tree is studied. In particular, the effect of a perfectly
nonlinear Cayley tree is considered. A sharp self-trapping transition is
observed in each case. It is also observed that the transition is much sharper
compared to the case of one-dimensional lattices. For each system, the critical
values of for the self-trapping transitions are found to obey a
power-law behavior as a function of the connectivity of the Cayley tree.Comment: 6 pages, 7 fig
Cosmological parameters from SDSS and WMAP
We measure cosmological parameters using the three-dimensional power spectrum
P(k) from over 200,000 galaxies in the Sloan Digital Sky Survey (SDSS) in
combination with WMAP and other data. Our results are consistent with a
``vanilla'' flat adiabatic Lambda-CDM model without tilt (n=1), running tilt,
tensor modes or massive neutrinos. Adding SDSS information more than halves the
WMAP-only error bars on some parameters, tightening 1 sigma constraints on the
Hubble parameter from h~0.74+0.18-0.07 to h~0.70+0.04-0.03, on the matter
density from Omega_m~0.25+/-0.10 to Omega_m~0.30+/-0.04 (1 sigma) and on
neutrino masses from <11 eV to <0.6 eV (95%). SDSS helps even more when
dropping prior assumptions about curvature, neutrinos, tensor modes and the
equation of state. Our results are in substantial agreement with the joint
analysis of WMAP and the 2dF Galaxy Redshift Survey, which is an impressive
consistency check with independent redshift survey data and analysis
techniques. In this paper, we place particular emphasis on clarifying the
physical origin of the constraints, i.e., what we do and do not know when using
different data sets and prior assumptions. For instance, dropping the
assumption that space is perfectly flat, the WMAP-only constraint on the
measured age of the Universe tightens from t0~16.3+2.3-1.8 Gyr to
t0~14.1+1.0-0.9 Gyr by adding SDSS and SN Ia data. Including tensors, running
tilt, neutrino mass and equation of state in the list of free parameters, many
constraints are still quite weak, but future cosmological measurements from
SDSS and other sources should allow these to be substantially tightened.Comment: Minor revisions to match accepted PRD version. SDSS data and ppt
figures available at http://www.hep.upenn.edu/~max/sdsspars.htm
Gravitational Lensing at Millimeter Wavelengths
With today's millimeter and submillimeter instruments observers use
gravitational lensing mostly as a tool to boost the sensitivity when observing
distant objects. This is evident through the dominance of gravitationally
lensed objects among those detected in CO rotational lines at z>1. It is also
evident in the use of lensing magnification by galaxy clusters in order to
reach faint submm/mm continuum sources. There are, however, a few cases where
millimeter lines have been directly involved in understanding lensing
configurations. Future mm/submm instruments, such as the ALMA interferometer,
will have both the sensitivity and the angular resolution to allow detailed
observations of gravitational lenses. The almost constant sensitivity to dust
emission over the redshift range z=1-10 means that the likelihood for strong
lensing of dust continuum sources is much higher than for optically selected
sources. A large number of new strong lenses are therefore likely to be
discovered with ALMA, allowing a direct assessment of cosmological parameters
through lens statistics. Combined with an angular resolution <0.1", ALMA will
also be efficient for probing the gravitational potential of galaxy clusters,
where we will be able to study both the sources and the lenses themselves, free
of obscuration and extinction corrections, derive rotation curves for the
lenses, their orientation and, thus, greatly constrain lens models.Comment: 69 pages, Review on quasar lensing. Part of a LNP Topical Volume on
"Dark matter and gravitational lensing", eds. F. Courbin, D. Minniti. To be
published by Springer-Verlag 2002. Paper with full resolution figures can be
found at ftp://oden.oso.chalmers.se/pub/tommy/mmviews.ps.g
Reionization by active sources and its effects on the cosmic microwave background
We investigate the possible effects of reionization by active sources on the
cosmic microwave background. We concentrate on the sources themselves as the
origin of reionization, rather than early object formation, introducing an
extra period of heating motivated by the active character of the perturbations.
Using reasonable parameters, this leads to four possibilities depending on the
time and duration of the energy input: delayed last scattering, double last
scattering, shifted last scattering and total reionization. We show that these
possibilities are only very weakly constrained by the limits on spectral
distortions from the COBE FIRAS measurements. We illustrate the effects of
these reionization possibilities on the angular power spectrum of temperature
anisotropies and polarization for simple passive isocurvature models and simple
coherent sources, observing the difference between passive and active models.
Finally, we comment on the implications of this work for more realistic active
sources, such as causal white noise and topological defect models. We show for
these models that non-standard ionization histories can shift the peak in the
CMB power to larger angular scales.Comment: 21 pages LaTeX with 11 eps figures; replaced with final version
accepted for publication in Phys. Rev.
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
Measurement of D*+/- meson production in jets from pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
This paper reports a measurement of D*+/- meson production in jets from
proton-proton collisions at a center-of-mass energy of sqrt(s) = 7 TeV at the
CERN Large Hadron Collider. The measurement is based on a data sample recorded
with the ATLAS detector with an integrated luminosity of 0.30 pb^-1 for jets
with transverse momentum between 25 and 70 GeV in the pseudorapidity range
|eta| < 2.5. D*+/- mesons found in jets are fully reconstructed in the decay
chain: D*+ -> D0pi+, D0 -> K-pi+, and its charge conjugate. The production rate
is found to be N(D*+/-)/N(jet) = 0.025 +/- 0.001(stat.) +/- 0.004(syst.) for
D*+/- mesons that carry a fraction z of the jet momentum in the range 0.3 < z <
1. Monte Carlo predictions fail to describe the data at small values of z, and
this is most marked at low jet transverse momentum.Comment: 10 pages plus author list (22 pages total), 5 figures, 1 table,
matches published version in Physical Review
- …
