58 research outputs found

    Trans-generational plasticity in response to immune challenge is constrained by heat stress

    Get PDF
    Trans-generational plasticity is the adjustment of phenotypes to changing habitat conditions that persist longer than the individual lifetime. Fitness benefits (adaptive TGP) are expected upon matching parent-offspring environments. In a global change scenario, several performance-related environmental factors are changing simultaneously. This lowers the predictability of offspring environmental conditions, potentially hampering the benefits of trans-generational plasticity. For the first time, we here explore how the combination of an abiotic and a biotic environmental factor in the parental generation plays out as trans-generational effect in the offspring. We fully reciprocally exposed the parental generation of the pipefish Syngnathus typhle to an immune challenge and elevated temperatures simulating a naturally occurring heatwave. Upon mating and male pregnancy, offspring were kept in ambient or elevated temperature regimes combined with a heat-killed bacterial epitope treatment. Differential gene expression (immune genes and DNA- and histone-modification genes) suggests that the combined change of an abiotic and a biotic factor in the parental generation had interactive effects on offspring performance, the temperature effect dominated over the immune challenge impact. The benefits of certain parental environmental conditions on offspring performance did not sum up when abiotic and biotic factors were changed simultaneously supporting that available resources that can be allocated to phenotypic trans-generational effects are limited. Temperature is the master regulator of trans-generational phenotypic plasticity, which potentially implies a conflict in the allocation of resources towards several environmental factors. This asks for a reassessment of trans-generational plasticity as a short-term option to buffer environmental variation in the light of climate change

    Maternal environment shapes the life history and susceptibility to malaria of Anopheles gambiae mosquitoes

    Get PDF
    BACKGROUND: It is becoming generally recognized that an individual's phenotype can be shaped not only by its own genotype and environmental experience, but also by its mother's environment and condition. Maternal environmental factors can influence mosquitoes' population dynamics and susceptibility to malaria, and therefore directly and indirectly the epidemiology of malaria. METHODS: In a full factorial experiment, the effects of two environmental stressors - food availability and infection with the microsporidian parasite Vavraia culicis - of female mosquitoes (Anopheles gambiae sensu stricto) on their offspring's development, survival and susceptibility to malaria were studied. RESULTS: The offspring of A. gambiae s.s. mothers infected with V. culicis developed into adults more slowly than those of uninfected mothers. This effect was exacerbated when mothers were reared on low food. Maternal food availability had no effect on the survival of their offspring up to emergence, and microsporidian infection decreased survival only slightly. Low food availability for mothers increased and V. culicis-infection of mothers decreased the likelihood that the offspring fed on malaria-infected blood harboured malaria parasites (but neither maternal treatment influenced their survival up to dissection). CONCLUSIONS: Resource availability and infection with V. culicis of A. gambiae s.s. mosquitoes not only acted as direct environmental stimuli for changes in the success of one generation, but could also lead to maternal effects. Maternal V. culicis infection could make offspring more resistant and less likely to transmit malaria, thus enhancing the efficacy of the microsporidian for the biological control of malaria

    Transgenerational Effects of Parental Larval Diet on Offspring Development Time, Adult Body Size and Pathogen Resistance in Drosophila melanogaster

    Get PDF
    Environmental conditions experienced by parents are increasingly recognized to affect offspring performance. We set out to investigate the effect of parental larval diet on offspring development time, adult body size and adult resistance to the bacterium Serratia marcescens in Drosophila melanogaster. Flies for the parental generation were raised on either poor or standard diet and then mated in the four possible sex-by-parental diet crosses. Females that were raised on poor food produced larger offspring than females that were raised on standard food. Furthermore, male progeny sired by fathers that were raised on poor food were larger than male progeny sired by males raised on standard food. Development times were shortest for offspring whose one parent (mother or the father) was raised on standard and the other parent on poor food and longest for offspring whose parents both were raised on poor food. No evidence for transgenerational effects of parental diet on offspring disease resistance was found. Although paternal effects have been previously demonstrated in D. melanogaster, no earlier studies have investigated male-mediated transgenerational effects of diet in this species. The results highlight the importance of not only considering the relative contribution each parental sex has on progeny performance but also the combined effects that the two sexes may have on offspring performance

    Liquid 4He: contributions to first principles theory of quantized vortices, thermohydrodynamic properties, and the lambda transition

    Full text link
    Liquid 4He has been studied extensively for almost a century, but there are still a number of outstanding weak or missing links in our comprehension of it. This paper reviews some of the principal paths taken in previous research and then proceeds to fill gaps and create an integrated picture with more complete understanding through first principles treatment of a realistic model that starts with a microscopic, atomistic description of the liquid. Newly derived results for vortex cores and thermohydrodynamic properties for a two-fluid model are used to show that interacting quantized vortices may produce a lambda anomaly in specific heat near the superfluid transition where flow properties change. The nature of the order in the superfluid state is explained. Experimental support for new calculations is exhibited, and a unique specific heat experiment is proposed to test predictions of the theory. Relevance of the theory to modern research in cosmology, astrophysics, and Bose-Einstein condensates is discussed.Comment: 155 pages, 28 figure

    Timing and spatial distribution of deformation in the Newfoundland Appalachians: a "multi-stage collision" history

    Full text link
    The Newfoundland Appalachians have been interpreted as an area where Lower Paleozoic plate convergence culminated in collision between an Ordovician volcanic chain and the North American craton hi Middle Ordovician times. Closure of the intervening proto-Atlantic (Iapetus) ocean was considered incomplete. Subsequent deformation gave rise to regional folding and faulting.Recent studies in the Newfoundland Dunnage zone have revealed that the deformation history is far more complex than previously recognized. Large-scale thrusting, folding and faulting occurred in Silurian-Devonian times. Furthermore, it has been suggested that the Dunnage zone is an allochthonous terrane underlain by dominantly continental crust rather than representing remnants of a "rooted" ocean basin.In view of these results a revision of tectonic scenarios and zonal subdivision is warranted and a "multi-stage collision" history will be discussed, with emphasis on the spatial distribution and significance of Silurian-Devonian deformation in central Newfoundland.Subduction in Lower Paleozoic times gave rise to the formation of a volcanic terrane; concurrently, to the southeast a marginal sea was formed (Mariana-type subduction). In Middle Ordovician times the volcanic terrane collided with the North American craton ("first-stage collision") and back-arc spreading terminated. Continued crustal shortening resulted in the formation of a Silurian accretionary terrane (telescoped marginal sea), and its subsequent deformation ("second-stage collision"). Devonian (-Carboniferous?) strike-slip faulting represents the third stage in the collision history.The model is applicable to large tracts of the Caledonian-Appalachian chain. Its main characteristics are: 1. (a) the revised zonal subdivision of the area is based on characteristics of Silurian and older rocks, rather than Middle Ordovician and older rocks only;2. (b) the central part of the orogen represents a telescoped marginal sea that formed to the southeast of the Ordovician volcanic chain, rather than a remnant of the incompletely closed Iapetus ocean;3. (c) the earliest deformation is progressively younger toward the southeast;4. (d) the Appalachian collision history is a result of the activity of a single deformation regime over a long period of at least 75 Ma.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/26738/1/0000289.pd

    Progress and prospects for event tourism research

    Get PDF
    This paper examines event tourism as a field of study and area of professional practice updating the previous review article published in 2008. In this substantially extended review, a deeper analysis of the field’s evolution and development is presented, charting the growth of the literature, focusing both chronologically and thematically. A framework for understanding and creating knowledge about events and tourism is presented, forming the basis which signposts established research themes and concepts and outlines future directions for research. In addition, the review article focuses on constraining and propelling forces, ontological advances, contributions from key journals, and emerging themes and issues. It also presents a roadmap for research activity in event tourism
    • …
    corecore