481 research outputs found
Higher-Spin Gauge Interactions for Massive Matter Fields in 3D AdS Space-Time
A remarkable feature of the models with interactions exhibiting higher-spin
(HS) gauge symmetries in is that their most symmetric vacua require
(anti)-de Sitter (AdS) geometry rather than the flat one. In striking
parallelism to what might be expected of M theory HS gauge theories describe
infinite towers of fields of all spins and possess naturally space-time SUSY
and Chan-Paton type inner symmetries. In this paper, we analyze at the level of
the equations of motion the simplest non-trivial HS model which describes HS
gauge interactions (on the top of the usual supergravitational and
(Chern-Simons) Yang-Mills interactions) of massive spin-0 and spin-1/2 matter
fields in d=2+1 AdS space-time. The parameter of mass of the matter fields is
identified with the vev of a certain auxiliary field in the model. The matter
fields are shown to be arranged into d3 N=2 massive hypermultiplets in certain
representations of Yang-Mills gauge groups. Discrete
symmetries of the full system are studied, and the related N=1 supersymmetric
truncations with O(n) and Sp(n) Yang-Mills symmetries are constructed. The
simplicity of the model allows us to elucidate some general properties of the
HS models. In particular, a new result, which can have interesting implications
to the higher-dimensional models, is that our model is shown to admit an
"integrating" flow that proves existence of a non-local B\"acklund-Nicolai-type
mapping to the free system.Comment: LaTeX, 46 pages, no figures; minor corrections, typo
Single-atom entropy squeezing for two two-level atoms interacting with a single-mode radiation field
In this paper we consider a system of two two-level atoms interacting with a
single-mode quantized electromagnetic field in a lossless resonant cavity via
-photon-transition mechanism. The field and the atoms are initially prepared
in the coherent state and the excited atomic states, respectively. For this
system we investigate the entropy squeezing, the atomic variances, the von
Neumann entropy and the atomic inversions for the single-atom case. We show
that the more the number of the parties in the system the less the amounts of
the nonclassical effects exhibited in the entropy squeezing.
The entropy squeezing can give information on the corresponding von Neumann
entropy. Also the nonclassical effects obtained form the asymmetric atoms are
greater than those obtained form the symmetric atoms. Finally, the entropy
squeezing gives better information than the atomic variances only for the
asymmetric atoms.Comment: 15 pages, 4 figures, comments are most welcom
Weak lensing, dark matter and dark energy
Weak gravitational lensing is rapidly becoming one of the principal probes of
dark matter and dark energy in the universe. In this brief review we outline
how weak lensing helps determine the structure of dark matter halos, measure
the expansion rate of the universe, and distinguish between modified gravity
and dark energy explanations for the acceleration of the universe. We also
discuss requirements on the control of systematic errors so that the
systematics do not appreciably degrade the power of weak lensing as a
cosmological probe.Comment: Invited review article for the GRG special issue on gravitational
lensing (P. Jetzer, Y. Mellier and V. Perlick Eds.). V3: subsection on
three-point function and some references added. Matches the published versio
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC
Measurements of inclusive jet suppression in heavy ion collisions at the LHC
provide direct sensitivity to the physics of jet quenching. In a sample of
lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated
luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with
a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the
transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the
anti-kt algorithm with values for the distance parameter that determines the
nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of
the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp.
Jet production is found to be suppressed by approximately a factor of two in
the 10% most central collisions relative to peripheral collisions. Rcp varies
smoothly with centrality as characterized by the number of participating
nucleons. The observed suppression is only weakly dependent on jet radius and
transverse momentum. These results provide the first direct measurement of
inclusive jet suppression in heavy ion collisions and complement previous
measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables,
submitted to Physics Letters B. All figures including auxiliary figures are
available at
http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02
Massively parallel simulations for disordered systems
Simulations of systems with quenched disorder are extremely demanding,
suffering from the combined effect of slow relaxation and the need of
performing the disorder average. As a consequence, new algorithms, improved
implementations, and alternative and even purpose-built hardware are often
instrumental for conducting meaningful studies of such systems. The ensuing
demands regarding hardware availability and code complexity are substantial and
sometimes prohibitive. We demonstrate how with a moderate coding effort leaving
the overall structure of the simulation code unaltered as compared to a CPU
implementation, very significant speed-ups can be achieved from a parallel code
on GPU by mainly exploiting the trivial parallelism of the disorder samples and
the near-trivial parallelism of the parallel tempering replicas. A combination
of this massively parallel implementation with a careful choice of the
temperature protocol for parallel tempering as well as efficient cluster
updates allows us to equilibrate comparatively large systems with moderate
computational resources.Comment: accepted for publication in EPJB, Topical issue - Recent advances in
the theory of disordered system
The Origin, Early Evolution and Predictability of Solar Eruptions
Coronal mass ejections (CMEs) were discovered in the early 1970s when space-borne coronagraphs revealed that eruptions of plasma are ejected from the Sun. Today, it is known that the Sun produces eruptive flares, filament eruptions, coronal mass ejections and failed eruptions; all thought to be due to a release of energy stored in the coronal magnetic field during its drastic reconfiguration. This review discusses the observations and physical mechanisms behind this eruptive activity, with a view to making an assessment of the current capability of forecasting these events for space weather risk and impact mitigation. Whilst a wealth of observations exist, and detailed models have been developed, there still exists a need to draw these approaches together. In particular more realistic models are encouraged in order to asses the full range of complexity of the solar atmosphere and the criteria for which an eruption is formed. From the observational side, a more detailed understanding of the role of photospheric flows and reconnection is needed in order to identify the evolutionary path that ultimately means a magnetic structure will erupt
Social Media, Gender and the Mediatisation of War: Exploring the German Armed Forces’ Visual Representation of the Afghanistan Operation on Facebook
Studies on the mediatisation of war point to attempts of governments to regulate the visual perspective of their involvements in armed conflict – the most notable example being the practice of ‘embedded reporting’ in Iraq and Afghanistan. This paper focuses on a different strategy of visual meaning-making, namely, the publication of images on social media by armed forces themselves. Specifically, we argue that the mediatisation of war literature could profit from an increased engagement with feminist research, both within Critical Security/Critical Military Studies and within Science and Technology Studies that highlight the close connection between masculinity, technology and control. The article examines the German military mission in Afghanistan as represented on the German armed forces’ official Facebook page. Germany constitutes an interesting, and largely neglected, case for the growing literature on the mediatisation of war: its strong antimilitarist political culture makes the representation of war particularly delicate. The paper examines specific representational patterns of Germany’s involvement in Afghanistan and discusses the implications which arise from what is placed inside the frame of visibility and what remains out of its view
Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel
A major use of the 1000 Genomes Project (1000GP) data is genotype imputation in genome-wide association studies (GWAS). Here we develop a method to estimate haplotypes from low-coverage sequencing data that can take advantage of single-nucleotide polymorphism (SNP) microarray genotypes on the same samples. First the SNP array data are phased to build a backbone (or 'scaffold') of haplotypes across each chromosome. We then phase the sequence data 'onto' this haplotype scaffold. This approach can take advantage of relatedness between sequenced and non-sequenced samples to improve accuracy. We use this method to create a new 1000GP haplotype reference set for use by the human genetic community. Using a set of validation genotypes at SNP and bi-allelic indels we show that these haplotypes have lower genotype discordance and improved imputation performance into downstream GWAS samples, especially at low-frequency variants. © 2014 Macmillan Publishers Limited. All rights reserved
Determination of the Form Factors for the Decay B0 --> D*-l+nu_l and of the CKM Matrix Element |Vcb|
We present a combined measurement of the Cabibbo-Kobayashi-Maskawa matrix element and of the parameters , , and , which fully characterize the form factors of the decay in the framework of HQET, based on a sample of about 52,800 decays recorded by the BABAR detector. The kinematical information of the fully reconstructed decay is used to extract the following values for the parameters (where the first errors are statistical and the second systematic): , , , . By combining these measurements with the previous BABAR measurements of the form factors which employs a different technique on a partial sample of the data, we improve the statistical accuracy of the measurement, obtaining: and Using the lattice calculations for the axial form factor , we extract , where the third error is due to the uncertainty in
- …