9 research outputs found

    PRODOC: a resource for the comparison of tethered protein domain architectures with in-built information on remotely related domain families

    Get PDF
    PROtein Domain Organization and Comparison (PRODOC) comprises several programs that enable convenient comparison of proteins as a sequence of domains. The in-built dataset currently consists of ∼698 000 proteins from 192 organisms with complete genomic data, and all the SWISSPROT proteins obtained from the Pfam database. All the entries in PRODOC are represented as a sequence of functional domains, assigned using hidden Markov models, instead of as a sequence of amino acids. On average 69% of the proteins in the proteomes and 49% of the residues are covered by functional domain assignments. Software tools allow the user to query the dataset with a sequence of domains and identify proteins with the same or a jumbled or circularly permuted arrangement of domains. As it is proposed that proteins with jumbled or the same domain sequences have similar functions, this search tool is useful in assigning the overall function of a multi-domain protein. Unique features of PRODOC include the generation of alignments between multi-domain proteins on the basis of the sequence of domains and in-built information on distantly related domain families forming superfamilies. It is also possible using PRODOC to identify domain sharing and gene fusion events across organisms. An exhaustive genome–genome comparison tool in PRODOC also enables the detection of successive domain sharing and domain fusion events across two organisms. The tool permits the identification of gene clusters involved in similar biological processes in two closely related organisms. The URL for PRODOC is

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    PRODOC: a resource for the comparison of tethered protein domain architectures with in-built information on remotely related domain families

    Get PDF
    PROtein Domain Organization and Comparison (PRODOC) comprises several programs that enable convenient comparison of proteins as a sequence of domains. The in-built dataset currently consists of approximately \sim698 000 proteins from 192 organisms with complete genomic data, and all the SWISSPROT proteins obtained from the Pfam database. All the entries in PRODOC are represented as a sequence of functional domains, assigned using hidden Markov models, instead of as a sequence of amino acids. On average 69% of the proteins in the proteomes and 49% of the residues are covered by functional domain assignments. Software tools allow the user to query the dataset with a sequence of domains and identify proteins with the same or a jumbled or circularly permuted arrangement of domains. As it is proposed that proteins with jumbled or the same domain sequences have similar functions, this search tool is useful in assigning the overall function of a multi-domain protein. Unique features of PRODOC include the generation of alignments between multi-domain proteins on the basis of the sequence of domains and in-built information on distantly related domain families forming superfamilies. It is also possible using PRODOC to identify domain sharing and gene fusion events across organisms. An exhaustive genome-genome comparison tool in PRODOC also enables the detection of successive domain sharing and domain fusion events across two organisms. The tool permits the identification of gene clusters involved in similar biological processes in two closely related organisms. The URL for PRODOC is http://hodgkin.mbu.iisc.ernet.in/~prodoc

    Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990-2016 : a systematic analysis for the Global Burden of Disease Study 2016

    Get PDF
    Background Traumatic brain injury (TBI) and spinal cord injury (SCI) are increasingly recognised as global health priorities in view of the preventability of most injuries and the complex and expensive medical care they necessitate. We aimed to measure the incidence, prevalence, and years of life lived with disability (YLDs) for TBI and SCI from all causes of injury in every country, to describe how these measures have changed between 1990 and 2016, and to estimate the proportion of TBI and SCI cases caused by different types of injury. Methods We used results from the Global Burden of Diseases, Injuries, and Risk Factors (GBD) Study 2016 to measure the global, regional, and national burden of TBI and SCI by age and sex. We measured the incidence and prevalence of all causes of injury requiring medical care in inpatient and outpatient records, literature studies, and survey data. By use of clinical record data, we estimated the proportion of each cause of injury that required medical care that would result in TBI or SCI being considered as the nature of injury. We used literature studies to establish standardised mortality ratios and applied differential equations to convert incidence to prevalence of long-term disability. Finally, we applied GBD disability weights to calculate YLDs. We used a Bayesian meta-regression tool for epidemiological modelling, used cause-specific mortality rates for non-fatal estimation, and adjusted our results for disability experienced with comorbid conditions. We also analysed results on the basis of the Socio-demographic Index, a compound measure of income per capita, education, and fertility. Findings In 2016, there were 27.08 million (95% uncertainty interval [UI] 24.30-30.30 million) new cases of TBI and 0.93 million (0.78-1.16 million) new cases of SCI, with age-standardised incidence rates of 369 (331-412) per 100 000 population for TBI and 13 (11-16) per 100 000 for SCI. In 2016, the number of prevalent cases of TBI was 55.50 million (53.40-57.62 million) and of SCI was 27.04 million (24 .98-30 .15 million). From 1990 to 2016, the age-standardised prevalence of TBI increased by 8.4% (95% UI 7.7 to 9.2), whereas that of SCI did not change significantly (-0.2% [-2.1 to 2.7]). Age-standardised incidence rates increased by 3.6% (1.8 to 5.5) for TBI, but did not change significantly for SCI (-3.6% [-7.4 to 4.0]). TBI caused 8.1 million (95% UI 6. 0-10. 4 million) YLDs and SCI caused 9.5 million (6.7-12.4 million) YLDs in 2016, corresponding to age-standardised rates of 111 (82-141) per 100 000 for TBI and 130 (90-170) per 100 000 for SCI. Falls and road injuries were the leading causes of new cases of TBI and SCI in most regions. Interpretation TBI and SCI constitute a considerable portion of the global injury burden and are caused primarily by falls and road injuries. The increase in incidence of TBI over time might continue in view of increases in population density, population ageing, and increasing use of motor vehicles, motorcycles, and bicycles. The number of individuals living with SCI is expected to increase in view of population growth, which is concerning because of the specialised care that people with SCI can require. Our study was limited by data sparsity in some regions, and it will be important to invest greater resources in collection of data for TBI and SCI to improve the accuracy of future assessments. Copyright (C) 2018 The Author(s). Published by Elsevier Ltd.Peer reviewe
    corecore