1,219 research outputs found

    Concurrent anodal transcranial direct-current stimulation and motor task to influence sensorimotor cortex activation

    Get PDF
    Functional targeting with anodal high-definition transcranial direct current stimulation (HD-atDCS) of involved brain areas during performance of a motor task (online) may facilitate sensorimotor cortex neuroplasticity compared to performing the motor task after HD-atDCS (offline). The aim of this study was to employ functional near-infrared spectroscopy to compare the time course of motor task-related changes in sensorimotor cortex activation between online and offline HD-atDCS. We hypothesized that online HD-atDCS would have a greater effect on task-related sensorimotor cortex activation than offline HD-atDCS. In a within-subject sham controlled and randomized study design, 9 healthy participants underwent 3 HD-atDCS sessions (online, offline and sham) targeting the left sensorimotor cortex separated by 1 week. Functional near-infrared spectroscopy hemodynamic changes were measured from the left sensorimotor cortex during a simple finger opposition motor task before (Pre), immediately (T1) and 30 min after (T2) each session. The movement rates were not different between (online, offline, sham) or within (Pre, T1, T2) sessions. At T2, online HD-atDCS was associated with a significant increase (large effect size) in sensorimotor cortex activation (Hedges g = 1.01, p<0.001) when compared to sham; there was a nonsignificant trend to increase activation between offline and sham (Hedges g = 0.52, p=0.05) and between online and offline (Hedges g = 0.53, p=0.06). Concurrent application of HD-atDCS during a motor task may produce larger sensorimotor cortex activation than sequential application

    Ipsilateral M1 transcranial direct current stimulation increases excitability of the contralateral M1 during an active motor task: Implications for stroke rehabilitation

    Get PDF
    IntroductionAnodal transcranial direct current stimulation (a-tDCS) of the primary motor cortex (M1) elicits an increase in cortical excitability that outlasts the period of stimulation. However, little is known about effects of a-tDCS on the contralateral M1 during and after ipsilateral M1 stimulation. Therefore, we investigated the changes in corticospinal excitability and inhibition of the left M1 during and after 20min of a-tDCS to the right M1.Material and methodsEight healthy participants received real (2mA) and SHAM a-tDCS to the right M1 randomized across 2 testing sessions. Single- and paired-pulse transcranial magnetic stimulation (TMS) was applied to the left M1 to measure changes motor-evoked potential (MEP) amplitude from the right extensor carpi radialis (ECR) at 130% of resting and active motor threshold, cortical silent period (CSP) and short-interval cortical inhibition (SICI). Active motor threshold was measured during a wrist extension contraction that was less than 5% of maximal electromyographic activation of the ECR. TMS measurements were recorded at baseline, every 5min for 20min during and 10min after a-tDCS.ResultsThe results showed a significant (P<0.05) increase in left M1 MEP amplitude and reduction in CSP duration during (10 and 15min) and after (immediately and 10min post) a-tDCS to the right M1, only during the active motor task. A significant reduction (P<0.05) in SICI during the active task was also found immediately and 10min post a-tDCS. No significant changes in MEP amplitude, CSP and SICI were observed in the resting or active task during SHAM tDCS.DiscussionThe increase in left M1 MEP amplitude and reduction in CSP and SICI during and after 20min of right M1 a-tDCS is most likely to be attributed to a reduction in interhemispheric inhibition that is modulated by a-tDCS during the performance of an active task. Our findings may have significant implications for stroke rehabilitation whereby the application of a-tDCS on the contralesional M1 during neurorehabilitation of the paretic limb may be beneficial for inducing neuroplasticity of the ipsilesional M1 to improve motor function

    Performance of the EUDET-type beam telescopes

    Full text link
    Test beam measurements at the test beam facilities of DESY have been conducted to characterise the performance of the EUDET-type beam telescopes originally developed within the EUDET project. The beam telescopes are equipped with six sensor planes using MIMOSA26 monolithic active pixel devices. A programmable Trigger Logic Unit provides trigger logic and time stamp information on particle passage. Both data acquisition framework and offline reconstruction software packages are available. User devices are easily integrable into the data acquisition framework via predefined interfaces. The biased residual distribution is studied as a function of the beam energy, plane spacing and sensor threshold. Its standard deviation at the two centre pixel planes using all six planes for tracking in a 6\,GeV electron/positron-beam is measured to be (2.88\,\pm\,0.08)\,\upmu\meter.Iterative track fits using the formalism of General Broken Lines are performed to estimate the intrinsic resolution of the individual pixel planes. The mean intrinsic resolution over the six sensors used is found to be (3.24\,\pm\,0.09)\,\upmu\meter.With a 5\,GeV electron/positron beam, the track resolution halfway between the two inner pixel planes using an equidistant plane spacing of 20\,mm is estimated to (1.83\,\pm\,0.03)\,\upmu\meter assuming the measured intrinsic resolution. Towards lower beam energies the track resolution deteriorates due to increasing multiple scattering. Threshold studies show an optimal working point of the MIMOSA26 sensors at a sensor threshold of between five and six times their RMS noise. Measurements at different plane spacings are used to calibrate the amount of multiple scattering in the material traversed and allow for corrections to the predicted angular scattering for electron beams

    Focal Hemodynamic Responses in the Stimulated Hemisphere During High-Definition Transcranial Direct Current Stimulation

    Get PDF
    OBJECTIVE: High-definition transcranial direct current stimulation (HD-tDCS) using a 4 × 1 electrode montage has been previously shown using modeling and physiological studies to constrain the electric field within the spatial extent of the electrodes. The aim of this proof-of-concept study was to determine if functional near-infrared spectroscopy (fNIRS) neuroimaging can be used to determine a hemodynamic correlate of this 4 × 1 HD-tDCS electric field on the brain. MATERIALS AND METHODS: In a three session cross-over study design, 13 healthy males received one sham (2 mA, 30 sec) and two real (HD-tDCS-1 and HD-tDCS-2, 2 mA, 10 min) anodal HD-tDCS targeting the left M1 via a 4 × 1 electrode montage (anode on C3 and 4 return electrodes 3.5 cm from anode). The two real HD-tDCS sessions afforded a within-subject replication of the findings. fNIRS was used to measure changes in brain hemodynamics (oxygenated hemoglobin integral-O2 Hbint ) during each 10 min session from two regions of interest (ROIs) in the stimulated left hemisphere that corresponded to "within" (Lin ) and "outside" (Lout ) the spatial extent of the 4 × 1 electrode montage, and two corresponding ROIs (Rin and Rout ) in the right hemisphere. RESULTS: The ANOVA showed that both real anodal HD-tDCS compared to sham induced a significantly greater O2 Hbint in the Lin than Lout ROIs of the stimulated left hemisphere; while there were no significant differences between the real and sham sessions for the right hemisphere ROIs. Intra-class correlation coefficients showed "fair-to-good" reproducibility for the left stimulated hemisphere ROIs. CONCLUSIONS: The greater O2 Hbint "within" than "outside" the spatial extent of the 4 × 1 electrode montage represents a hemodynamic correlate of the electrical field distribution, and thus provides a prospective reliable method to determine the dose of stimulation that is necessary to optimize HD-tDCS parameters in various applications

    Measurements of branching fraction ratios and CP-asymmetries in suppressed B^- -> D(-> K^+ pi^-)K^- and B^- -> D(-> K^+ pi^-)pi^- decays

    Get PDF
    We report the first reconstruction in hadron collisions of the suppressed decays B^- -> D(-> K^+ pi^-)K^- and B^- -> D(-> K^+ pi^-)pi^-, sensitive to the CKM phase gamma, using data from 7 fb^-1 of integrated luminosity collected by the CDF II detector at the Tevatron collider. We reconstruct a signal for the B^- -> D(-> K^+ pi^-)K^- suppressed mode with a significance of 3.2 standard deviations, and measure the ratios of the suppressed to favored branching fractions R(K) = [22.0 \pm 8.6(stat)\pm 2.6(syst)]\times 10^-3, R^+(K) = [42.6\pm 13.7(stat)\pm 2.8(syst)]\times 10^-3, R^-(K)= [3.8\pm 10.3(stat)\pm 2.7(syst]\times 10^-3, as well as the direct CP-violating asymmetry A(K) = -0.82\pm 0.44(stat)\pm 0.09(syst) of this mode. Corresponding quantities for B^- -> D(-> K^+ pi^-)pi^- decay are also reported.Comment: 8 pages, 1 figure, accepted by Phys.Rev.D Rapid Communications for Publicatio
    corecore