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A High Wavenumber Boundary Element
Method for an Acoustic Scattering
Problem

By S N CHANDLER-WILDE, S LANGDON AND L. RITTERY
Department of Mathematical Sciences, Brunel University, Uzbridge UB8 3PH, UK

In this paper we show stability and convergence for a novel Galerkin boundary ele-
ment method approach to the impedance boundary value problem for the Helmholtz
equation in a half-plane with piecewise constant boundary data. This problem mod-
els, for example, outdoor sound propagation over inhomogeneous flat terrain. To
achieve a good approximation with a relatively low number of degrees of free-
dom we employ a graded mesh with smaller elements adjacent to discontinuities in
impedance, and a special set, of basis functions for the Galerkin method so that, on
each element, the approximation space consists of polynomials (of degree v) multi-
plied by traces of plane waves on the boundary. In the case where the impedance is
constant outside an interval [a, b], which only requires the discretization of [a, b], we
show theoretically and experimentally that the L, error in computing the acoustic
field on [a,b] is O(log” /% |k(b — a)| M ~+V), where M is the number of degrees
of freedom and k is the wavenumber. This indicates that the proposed method is
especially commendable for large intervals or a high wavenumber. In a final section
we sketch how the same methodology extends to more general scattering problems.

Keywords: high frequency scattering, Galerkin boundary element method

1. Introduction

In this paper we consider the numerical solution of the Helmholtz equation

Au + k*u =0, (1.1)
in the upper half-plane U := {(z1,72) € R? : 25 > 0}, with impedance boundary
condition 5

u
— +ikfu = 1.2
o, T kA= f (1.2)

onT :={(x1,0) : z; € R}, where k > 0 (the wavenumber) is some arbitrary positive
constant and 3, f € Lo (R), the set of complex-valued functions on R which are
bounded and measurable.

This boundary value problem can arise when modelling the acoustic scattering
of an incident wave by a planar surface with spatially varying acoustical surface
impedance (Chandler-Wilde & Hothersall 1985; Habault 1985). In the case in which
there is no variation in the acoustical properties of the surface or the incident
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2 S.N. Chandler-Wilde et al.

field in some fixed direction parallel to the surface, the problem is effectively two-
dimensional. Adopting Cartesian coordinates 0z 2223, let this direction be that of
the x3-axis and the surface be the plane 2 = 0. Under the further assumption that
the incident wave and scattered fields are time harmonic, the acoustic pressure at
time ¢, position (z1,zs,23) is given by Re(e “!u’(x)), where z = (z1,z2) € U,
w = 27wy and p is the frequency of the incident wave.

The total acoustic field u* € C(U) N C?(U) satisfies (1.1) and (1.2), with f = 0.
The wavenumber k = w/c, with ¢ being the speed of sound in U. In the case of an
incident plane wave, the incident field v’ is given by

Ul(ﬂf) — eikz-d — eik(zl sin @ —z5 cos 0)’ (13)
where d = (dy,ds) = (sinf, — cosf) and 0 € (—n/2,7/2) is the angle of incidence.
The reflected or scattered part of the wave field is u € C(U)NC?(U), defined by u =
ul —u’. The scattered field also satisfies (1.1) and (1.2) with f := —0u?/dzs —ikBu’.

! \ ]
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Figure 1. Acoustic scattering by an impedance boundary. Typical incident and reflected
rays are shown as well as some of the rays arising from diffraction at impedance disconti-
nuities.

The function § in (1.2) is the relative admittance of the surface and, in outdoor
sound propagation, depends on the frequency and the ground properties. Usually
the case when (3 is piecewise constant is of interest (Habault 1985; Hothersall &
Chandler-Wilde 1987) with § taking a different value for each ground surface type
(grassland, forest floor, road pavement, etc. (Attenborough 1985)). If the ground
surface is to absorb rather than emit energy, the condition Re(5) > 0 must be
satisfied. We assume throughout that Re(3) > ¢, for some € > 0, which in physical
terms ensures that the boundary is everywhere energy absorbing.

The impedance boundary value problem in a half-plane is also of interest as
a model of the scattering of an incident acoustic or electromagnetic wave by an
infinite rough surface, in which case (1.1) holds in a region D = {(z1,z2) € R? :
x2 > g(x1)}, for some bounded and at least Lipschitz continuous function g; see
e.g. Boulanger et al. (1998), Poirier et al. (2000).
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A High Wavenumber BEM 3

In this paper we are concerned with solving (1.1)—(1.2) numerically with par-
ticular emphasis on the case in which k£ may be large. This corresponds to the high
frequency/low wavelength case (the wavelength is A = ¢/u = 27 /k), and presents
a number of numerical difficulties.

Standard numerical schemes for solving scattering problems become prohibitively
expensive as k — oo. For standard boundary element schemes, where the approxi-
mation space consists of piecewise polynomials, the rule of thumb in the engineering
literature (see e.g. Perrey-Debain et al. 2003a, b) seems to be that between five to
ten elements are required per wavelength, in order to achieve reasonable accuracy.
If the wavelength is small compared to the size of the obstacle then large dense
systems of equations have to be solved. Much successful effort has been devoted
to solving these large systems quickly, using preconditioned iterative methods (e.g.
Amini & Maines 1998; Christiansen & Nedelec 2000) combined with fast multipole
or fast Fourier transform (FFT) based methods (e.g. Darve 2000; Bruno & Kunyan-
sky 2001a, b; Donepudi et al. 2003) to carry out the matrix-vector multiplications
efficiently. These methods considerably decrease computing costs allowing the so-
lution of higher frequency problems than would be possible using more standard
methods. However they still become impractical when k& becomes very large, since
the size of the linear systems to be solved grows at least linearly with respect to k.

For the specific problem (1.1)—(1.2) a standard boundary element method us-
ing piecewise constant collocation is discussed in Chandler-Wilde et al. (2002). An
approximate two-grid iterative solver is proposed with the matrix-vector multiplica-
tions required carried out by the FFT if a uniform grid is used. A rigorous numerical
analysis shows that, if § is constant outside [a, b], as in figure 1, then the solution u
on [a, b] can be computed with error O(kh|log kh||| f]|eo), for kh sufficiently small, in
O(M log M) operations, where h is the grid spacing and M = (b—a)/h is the num-
ber of degrees of freedom. This appears to be the first paper to present a method for
a scattering problem in more than one dimension in which the dependance of the
error estimates on k is established. The convergence rate is modest however, and
the method is still hindered by the constraint that the linear system to be solved
grows linearly in size with increasing k.

A recent approach in the literature for higher frequencies is to use either a fi-
nite element or a boundary element method in which the approximation space is
designed specifically to take advantage of the behaviour of the solution of (1.1) for
large k. Rather than using piecewise polynomials, one can enrich the approximation
space with plane wave or Bessel function solutions of (1.1), in order to represent
efficiently the highly oscillatory solution. This idea is applied in Monk & Wang
(1999) and Giladi & Keller (2001) in a finite element framework, and Perrey-Debain
et al. (2003a,b) in a boundary element framework. Other related methods are the
microlocal discretisation approach (de La Bourdonnaye 1994; Darrigrand 2002; Ab-
boud et al. 1994) the ultra weak variational formulation (Cessenat & Després 1998)
and the partition of unity method (Melenk & Babuska 1996). Although promising
numerical results are reported for all these methods, the only method for which an
error estimate exists specifying the dependence on the wavenumber £ is a microlo-
cal discretisation approach for plane wave scattering by smooth convex obstacles in
which a standard Galerkin boundary element method is applied to the ratio of the
scattered field to the incident field (Abboud et al. 1994). The error estimate in this
case is that the relative error in the best approximation from a boundary element

Article submitted to Royal Society



4 S.N. Chandler-Wilde et al.

space of piecewise polynomials of degree < v is O(h*) + O((hk'/?)**1). However,
the analysis does not guarantee that the Galerkin method solution is close to this
best approximation.

In this paper we present a new high frequency boundary element method for
(1.1)—(1.2). We consider the case in which f§ is piecewise constant, and constant
outside a finite interval [a, b]. To achieve good approximations with a relatively low
number of degrees of freedom, we obtain representations for the solution on the
boundary in the spirit of the geometrical theory of diffraction (Keller 1962). These
representations can be viewed as explicitly summing the reflected and diffracted ray
path contributions to the field on the boundary shown in figure 1. Precisely, we show
that after subtracting off the leading order behaviour as £ — oc on each interval
the remaining scattered wave can be expressed as the product of the oscillatory
functions e*™*1 and non-oscillatory functions which we denote as f;E Rigorous
bounds are established on the derivatives of the non-oscillatory functions f;E both
adjacent to and away from discontinuities in impedance.

In §3 we present our Galerkin method for solving the integral equation. A graded
mesh is employed with elements very large compared to the wavelength away from
discontinuities in 3, in order to take advantage of the smooth behaviour of f]1L
away from impedance discontinuities as deduced in §2. We use a special set, of basis
functions so that on each element the approximation space consists of polynomi-
als (of degree v) multiplied by e**21 5o that we obtain a piecewise polynomial
representation of the non-oscillatory functions fji.

In §4 we present an error analysis for the method. In our main result (theo-
rem 4.3) we show that the error in computing an approximation to u!|r on [a,b] in
the Ly norm is O(log”**/? |k(b— a)|M~“+1)) where M is the number of degrees of
freedom. This estimate implies that, to maintain accuracy, M has to increase only
approximately in proportion to log k(b — a) as k(b — a) increases, as compared to
in proportion to k(b — a) for standard boundary element methods, e.g. that anal-
ysed in Chandler-Wilde et al. (2002). In §5 we discuss the practical implementation
of our approach, and we present some numerical results demonstrating that the
theoretically predicted behaviour is achieved.

Finally in §6 we summarise our results and discuss the extent to which the nu-
merical schemes and analysis presented in this paper are applicable to more general
scattering problems. As an initial step in this direction we briefly consider the prob-
lem of 2D scattering by a convex polygon, using on each side of the polygon the
same basis functions and boundary element mesh as proposed in §3. This problem
will be considered in detail in Chandler-Wilde & Langdon (2003, in preparation).

2. Integral equation formulation and regularity

We begin by stating the problem we wish to solve precisely and reformulating it
as an integral equation. For simplicity of exposition, we restrict our attention to
the case of plane wave incidence, so that u’ is given by (1.3). The scattered field
satisfies the impedance boundary condition (1.2) with f at the point (z1,0) on T
explicitly given by

f(z1) = ike'*®150% (cos @ — B(x1)), x1 € R (2.1)
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We also assume throughout that § is piecewise constant, and constant outside some

finite interval [a, b]. Thus, for some real numbers a = tg < t; < --- < t, = b, the
relative surface admittance at (z1,0) on T is given by
ﬂj: xle(tjflatj]; j:l,...,n,
T1) = 2.2
6( 1) { ﬂC: T € ]R\(t():tn]) ( )

(see figure 1) where we assume throughout that
RefB. >0, RefB; >0, j=1,...,n (2.3)

For H > 0,let Uy := {(z1,22) : 21 € Rzy > H} and 'y := {(21, H) : 1 € R}.
To determine v uniquely we impose the radiation condition proposed in Chandler-
Wilde (1997) that, for some H > 0, u can be written in the half-plane Up as the
double layer potential

oH" (k| — y))

ulr) =
(z) - i

QS(y) ds(y)a T e UH: (24)

for some density ¢ € Lo (I'y), where Hél) is the Hankel function of the first kind
of order zero. The boundary value problem for the scattered field u that we wish
to solve is thus as follows:

Boundary Value Problem. Given k > 0 (the wavenumber), § € (—m/2,7/2) (the
angle of incidence) and 3 given by (2.2), find uw € C(U) NC*(U) such that:

(i) u is bounded in the horizontal strip U\Upy for every H > 0;
(#) u satisfies the Helmholtz equation (1.1) in U;

(#i) u satisfies the impedance boundary condition (1.2) on T (in the weak sense
explained in Chandler-Wilde (1997)), with f € Loo(T) given by (2.1);

() u satisfies the radiation condition (2.4), for some H >0 and ¢ € Loo(Trr).

For p* € C with Ref* > 0 let G« (z,y) denote the Green’s function for the
above problem which satisfies (1.2), with § = 8* and f = 0, and the standard
Sommerfeld radiation and boundedness conditions. I.e. Gg«(z,y) is the Green’s

function for constant relative surface admittance $*. Then explicitly (Chandler-
Wilde & Hothersall 1995a),

i i —
G (a,y) = HS (Hla—yl) + TH (ke —y/) + Po- (@ =), .y eT,a £y,
(2.5)
where y = (y1,92), ¥’ = (y1, —¥2) and, for z = (21, 22), 22 > 0,

_iB /°° exp(i(z2(1 — 5*)Y/% — 219))
o1 J_oo (1= $2)172((1 — s2)1/2 + %)

P (2) := ds, 0 <arg((1-s*)'/?) < n/2.

(2.6)
In Chandler-Wilde & Hothersall (1995a) an alternative representation for Pg« is
also given, that Ps«(z) := Pé* (z) + P[f* (z), where

, . Breilsl o t—1/2e—|z|t(ﬁ* + (1 +it))
Pa.(2) = — /0 (t — 20)1/2(12 — 2i(1 + B*y)t — (B* +7)?)

at, (27
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6 S.N. Chandler-Wilde et al.

and P[f* (2) = Og-ell?ll-04) with

Im * < 0,Re(a4) < 0,
A=B"2)17%> Im 3* < 0,Re(ay) =0, (2.8)
0, otherwise,

8*
(I_B*i)l/z )
Cﬁ* =

az = 148*vF(1-4*2)2(1—2)2, Re{(1—*?)1/2} > 0, and 7 = 25 /|2|. Note that
(Chandler-Wilde & Hothersall 1995a) Ps- € C(U) N C>®(U\{0}) and Ps- satisfies
the Sommerfeld radiation and boundedness conditions in U (for wavenumber k = 1).

Suppose that, for some ¢ > 0, Re 3* > ¢, |B*] < e . From (2.6) we see that
|Ps«(2)| < C. for |z| < 1, where the constant C. depends only on e. Thus, and from
properties of the Hankel function for small argument, we deduce that

Gp (2,y)| < Ce(1—log(klz —yl)), z€U,yel, 0<klz—y[<1, (2.9

where the constant C, depends only on €. From (2.9), the asymptotic behaviour of
the Hankel function for large argument and the uniform asymptotic expansions for
Pg- for large argument in Chandler-Wilde & Hothersall (1995b), it follows that

C.(1+kx —
Gor e < o) aeTyer vz, (2.10)

where, again, the value of C; > 0 depends only on e.

The following result, a reformulation of the above boundary value problem as
a boundary integral equation, is shown for f* = 1 in Chandler-Wilde (1997). The
extension to arbitrary 8* with Re * > 0 is straightforward, using the properties of
Pg. and G- we have just stated.

Theorem 2.1. If u satisfies the above boundary value problem and Re 8* > 0 then
u(@) = [ G0 646 — B)uls) - F)ds), 2 €T, (211)
r

Conversely, if ulr € BC(T') (the space of bounded and continuous functions on
T') and u satisfies (2.11), for some (* with Re 8* > 0, then u satisfies the above
boundary value problem.

Note that the estimates (2.9) and (2.10) guarantee that the integral in (2.11) is
well-defined. The following result holds regarding the solvability of (2.11).

Theorem 2.2. If Ref* > 0, (2.11) has ezactly one solution with u|lr € BC(T).

Proof. This result is shown for * = 1 in Chandler-Wilde (1997, theorem 4.17).
That this result holds for all 8* with Re 8* > 0 follows from theorem 2.1. O

In view of theorem 2.1, theorem 2.2 has the following corollary.
Corollary 2.3. The boundary value problem has exactly one solution.

Now, denote the solution of the above boundary value problem in the special
case = f8* by ug+. Then, by theorem 2.1,

upe(z) = — / Go-(z.9) " (4) ds(y), = €T, (2.12)
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where f* is given by (2.1) with 8(s) = 8*. Using the identity f*—f = —ik(3*—B)u?,
subtracting (2.12) from (2.11), and adding the incident field u’ to both sides,

u(2) = e () + ik / Go (2 9)(B(y) — Bl (W) ds(y), = €T,  (213)

where uf. :=u’ +ug- is the corresponding total field when §(s) = 5*.
In fact ug-, given by (2.12), is just the reflected plane wave

ug-(z) = Rg-(0)e**? | 1 €T, (2.14)

where d' = (d1, —d>) = (sinf,cosd) and Rg-(0) is the reflection coefficient R« (8) =
(cos® — B*)/(cosf + (*). To see this we just check that (2.14) satisfies all the
conditions of the boundary value problem, which it does (the upward propagating
radiation condition holds as discussed in Chandler-Wilde (1995)). Thus the total
field for constant relative surface admittance 8* is

ub. (z) = ek 4 Rg. ()et*d | 2T, (2.15)

Equation (2.13), restricted to I, is a boundary integral equation for u!|r and it is
the main concern in the remainder of the paper to solve this equation numerically in
the case when 8* = (.. To make explicit the dependence on the wavenumber £ in the
results we obtain it is useful to introduce new, dimensionless variables. Thus, define
6(s) = u!((s/k,0)), W3- (s) = ub.((s/k,0)), and kg (s) := G- ((s/k,0).(0,0)).
s € R. Then (2.13) restricted to I' is the following second kind integral equation
for ¢:

66) = v-6) 41 [ (s = DB - )00 At sER (216)

From (2.15) and (2.5),
vee(s) = (1+ Rg-(8))e*5"?, (2.17)
Ro(s) = SH{(s) + P ((5,0), s€R, (2.18)

so the only dependence on k in the known terms in (2.16) is in the impedance
function B(t/k).

Using (2.5)—(2.8) (noting that in this case v = 0) and the identity (Oberhettinger
& Badii 1973, [12.31))

_9i [® (i—t)s

1) =2 [, s>
T Jo t3(t—2i)2

we see that an explicit formula for ks (s) is

B*2ells! /°° 7 (t — 2i)"ze I8l

™ Jo (82 -2it - §*?)

= elllgg.(s), seR\{0}, (2.19)

koels) = S HS(sl) + at + PL ((5,0))
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8 S.N. Chandler-Wilde et al.

- 1 * Ir%(r — 21)% —7r|s] PP
Fn (5) = ;/0 g e M BE (), s e R\0), (2.20)

with P (s) := Cg, e~ 818+ Cj. given by (2.8) and 4t = 15 (1—*?)2. We shall see
shortly that the oscillating part of sg-(s) is contained in the factor ell*! in (2.19),
kg~ (s) becoming increasingly smooth as s — +oo.

In view of (2.2), if we set §* = [, in (2.16) the interval of integration reduces
to the finite interval [&,B], where @ := ka = kto, b := kb = kt,,. Explicitly, (2.16)
becomes

b
¢(s) = ¥3.(s) +i/ k(s —1)(B(t/k) = Bo)o(t) dt, s €R, (2.21)

with 15, and kg, given by (2.17) and (2.18) respectively with 8* = f.. We write
(2.21) in operator form as

¢ =15 + K9, (2.22)

where

b
K5ox(s) =1 [ (s = 080/ ~ Bx(o) dt.

As discussed in the introduction, our numerical scheme for solving (2.21) is
based on a consideration of the contribution of the reflected and diffracted ray
paths in the spirit of the geometrical theory of diffraction and as predicted by an
exact solution of the canonical problem of a plane wave incident on a boundary with
a single impedance discontinuity (Heins & Feshbach 1954). The relevant ray paths
incident on the boundary I' are depicted in figure 1. In particular, to leading order
as k — oo, on the interval (¢;_1,t;) the geometrical theory of diffraction predicts
that the total field ¢ & 1/;, the total field there would be if the whole boundary had
the admittance f; of the interval (¢;_1,t;), given explicitly by (2.17) with §* = j;.
Thus, for s # t; := kt;, j =0,...,n, the geometrical theory of diffraction predicts
that ¢(s) — ¥(s) as k — oo, where

,_ ’(/)Bj (5)7 5 € (Ej—lafj]ﬂ
)= { V. (s), s € R\(o,n]-

In our numerical scheme we compute the difference between ¢ and ¥, i.e.

j=1...,n,

B(s) = o(s) —¥(s), seR

which can be viewed as the correction to the leading order field due to scattering
from impedance discontinuities. From (2.22),

=0+ K0, (2.23)
where \Ilgc € Lo (R) is given by

U=, — U+ K0
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Equation (2.23) will be the integral equation that we solve numerically.
By setting $* = $; in (2.16) we obtain explicit expressions for ® on each subin-
terval, namely

d(s) = eisf;'(s —t;1) + efisfj_(th —s), s€(tj_1,t],i=1,...,n, (2.24)

where, for j =1,...,n, f;7, f; € C[0,00) are defined by

<~

—

=
I

[ e+ = e300 at,

—0o0

) = [ e (= e = )0l d,
for r > 0, with &g; given by (2.20) with 8* = §;.

In geometrical theory of diffraction terms, our interpretation of the first term
in (2.24) is that it is an explicit summation of all the diffracted rays scattered
at the discontinuity in impedance at ¢;_; which travel from left to right along
(tj—1,t;). Similarly, the other term in (2.24) is the contribution to the diffracted
field diffracted by the discontinuity at ¢;. In the remainder of this section, so as to
design an efficient discretisation for ®, we investigate in detail the behaviour of the
integrals fji. As a tool in this investigation we need first the following result which
follows from Chandler-Wilde et al. (2002, theorem 17). We note that our earlier
assumption (2.3) ensures that (2.25) below holds for some ¢ > 0.

Theorem 2.4. For every € > 0 there exists a constant C. > 0, dependent only on
€, such that, provided

Ref. >¢, Refj>e¢ |Bl<e !, |BI<e, j=1,...,n, (2.25)

the unique solution of the boundary value problem satisfies

u(x)| < Ce(1 + kxo 1/2, rz€eU.
|u()| (

We will also require the following bounds on |k§3m)(s)|, see Langdon & Chandler-
Wilde (2003) for the proof, and note that for m = 0 these bounds follow from (2.9)
and (2.10).

Lemma 2.5. Suppose that Re 3* > ¢, |3*| < €' hold for some € > 0. Then, for
m = 0,1,..., there exist constants c,,, dependent only on m and €, such that, for
0<s<1,

_(m) < co(1+ |logs|), m =0,
o) < { 2O e =

and, for s > 1,

&5 (5)] < ems™ 2™

We are now ready to establish the final key result of this section which quantifies
the smoothness of the functions fjjE € C[0,00) N C*(0, 00).
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10 S.N. Chandler-Wilde et al.

Theorem 2.6. Suppose that (2.25) holds for some € > 0. Then, for r > 0, m =
0,1,..., it holds that

)| < emF),

where, for 0 <1 <1,

1, m =0,
Fpn(r):=< 1-logr, m=1
rl=—m m > 2

and, forr > 1, )
F,(r):=r"2"™,

The constants ¢y, depend only on m and €.
Proof. We prove this result for f;'(r), the proof for f;° (r) follows analogously.

Recalling that ¢(s) = u!((s/k,0)), and using theorem 2.4 to get that ||¢||c < 1+C.,
it is straightforward to show that

) < wm&/ 55 (1 + £1 — 1))

t] 1
< c/ﬁ ™1,y —t)|dt = c/ 5™ (s)] ds,
where C' = 2(1 4+ C.)/e. Applying Lemma 2.5 the result follows. O

3. The Galerkin method

Our aim now is to design an optimal method to solve (2.23) numerically, supported
by a full error analysis. To achieve this we will work in Lo (R), and to that end we
begin by introducing the operator @) : Lo (R) — Lo(R) defined by

I X(s)v s € [avi)] = [anth]a
Q“@_{o, s € R\[a,].

Writing ®* := Q®, and noting that K3°® = K°®*, it follows from (2.23) that
= QU + QK;-9", (3.1)

where ®* and Q\Ilgc are both in Ly (R).

Before considering our approximation scheme, we will first establish existence
and boundedness for (I — QKgC)’l, and so bound ®* in terms of Q\Ilgc. It is well
known that the convolution operator K : Ly(R) — La(R), defined by Kx = kxx for
some x € L1(R), satisfies || K||2 < ||&]|co, Where & denotes the Fourier transform of «.
In the case of our integral equation (3.1), we have QKSCQ* = Q(ka *(1(B—P.)®*)),
and then noting that |Q]|2 = 1,

18 = Bellos

KBC < K,Bc
QK < 1K L

2 < ||I%Bc||00||ﬂ - ,BcHoo < (32)
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A High Wavenumber BEM 11

This last inequality follows by recalling (2.18), using the standard Fourier transform

of the Hankel function (e.g. Chandler-Wilde & Hothersall 1995a, equation (12)) and

noting that (2.6) takes the form of an inverse Fourier transform, to get ig.(s) =

i/((1—s*)'? 4+ B.), with 0 < arg(v/1 — s2) < 7/2, and hence ||f5,]|o0 < 1/Ref,.
Thus [|QKS°||> < 1if

|B; — Bl <Refe, j=1,...,n. (3.3)

The existence and boundedness of (I — QK/'?C)’1 : Lo(R) — Ly(R) then follows
from standard operator perturbation results (e.g. Kress 1989, theorem 2.8), from
which we deduce that (3.1) has the unique solution ®* = (I — QKgC)_lQ\IIB“, and

1 Re 3.
27l £ ———pf— 2 <
1= [|QK |2 Re fe = |18 = Belloo

provided (3.3) holds. If (3.3) does not hold, this stability result still follows, but
without an explicit expression for the stability constant. For Arens et al. (2001,
corollary 3.12) combined with theorem 2.2 imply that ||(] — Kgc)_lﬂz < C., pro-
vided (2.25) holds, where the constant C, depends only on ¢ and f3., and thus

Be
QW5

QW 2,

(I — QESe) M2 = |QKS<(I - K5°)* +1||» < CL,

where C! again depends only on € and f,.

To approximate the solution ®* = Q® of (3.1) we will use a Galerkin method.
The novelty of the scheme we propose is that the approximation space chosen is such
that, on each interval (£;_1,7;), we approximate f]"' (s—t;_1) and fi (t;—s) in (2.24)
by conventional piecewise polynomial approximations, rather than approximating
& itself. This makes sense since, as quantified by theorem 2.6, the functions f;r(s —
t;—1) and Iy (t; — s) are smooth (their higher order derivatives are small) away
from #;_; and t;, respectively. To approximate f;“(s —t;_1) and fi (tj — s) we use
piecewise polynomials of a fixed degree v > 0 on a graded mesh, the mesh grading
adapted in an optimal way to the bounds on fji(m) in theorem 2.6.

To begin, we define a graded mesh on a general interval [0, A], with more mesh
points near 0 and less near A. Then, to mesh the interval [fj,l,fj], we generate a
mesh on [0, A] with A = A4; := ({; — ;_1)/2, shift the mesh to [t;_1, ({;_1 +1;)/2].
and reflect it around (#;_; + £;)/2, thereby creating a symmetric mesh on the
whole interval. To mesh the interval [0, A] we pick a positive integer N (the size of
N determining the density of the mesh on [0, A]) and mesh [0, A] with the mesh
AN, 4 defined below. As we are primarily concerned with solving the high frequency
problem we will assume for simplicity that A; := ({; —%;_1)/2 > 1forj=1,...,n.
We remark however that, in the case A; < 1 for some value of j, we would use
an appropriate subset of the points y; given by (3.4) below as our mesh, and this
would give us similar approximation properties to those we achieve with Ay 4 in
the case A > 1.

Definition 3.1. For A > 1, N = 2,3,..., the mesh An a4 = {Y0,¥1,-- -, YN+NL}
consists of the points

i q
yl:(ﬁ) , ©1=0,...,N, (3.4)
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12 S.N. Chandler-Wilde et al.

where ¢ = 1 + %", together with the points
yni; = AN G =1, Ny, (3.5)
where Ny = [N*], the smallest integer > N*, and

log A
qlog(1— 7).

*._

(3.6)

The mesh Ay 4 is a composite mesh with a polynomial grading on [0, 1] and
a geometric grading on [1, A]. The definition of N4 ensures a smooth transition
between the two parts of the mesh. Precisely, the definition of N* is such that, in
the case Ngy = N*, it holds that yn11/yn = yn/yn—1, so that yy_; and yy are
points in both the polynomial and the geometric parts of the mesh.

Clearly, there are N subintervals of the mesh on [0,1] and N4 on [1, A]. By
the mean value theorem, —log(1 —1/N) =log1 —log(1 — 1/N) = 1/¢(N, for some
&€ (1-1/N,1). Since N > 2 it then holds that Nlog A/2¢ < N4y < NlogA/q+1,

so that 4 A
11 1
N+NA<<1+—+O§ >N<<§+Oi )N. (3.7)

N 2

In earlier work (Ritter 1999) a less optimal mesh, essentially the polynomial
mesh developed in Mendes (1988) for a class of Wiener-Hopf integral equations
on the half-line, was used for the same impedance boundary value problem. On
[0,1] our mesh (3.4) is identical to that in Mendes (1988), except that here we
establish the optimal value for ¢ (the error estimate in Ritter (1999) is proved
under the assumption that ¢ > v +1). The type of graded mesh we use on [0, 1] has
a long history, used first in Rice (1969), and first in an integral equation context in
Schneider (1981). In Rice (1969) it is shown, for 0 < a < 1, that z* for z € [0,1] is
optimally approximated in L, norm, using piecewise polynomials of degree < v on
the graded mesh (3.4), by taking ¢ = (3 +2v)/(1 + 2. Setting @ = 1 recovers the
value of ¢ that we propose in definition 3.1. Recalling theorem 2.6, we observe that
the mth derivatives of our functions fji behave like the limit as @ — 1 of the mth
derivative of %, so that our mesh on [0, 1] appears consistent with that proposed
in Rice (1969).

Let

ANy = {0 : 0|y, .y, is a polynomial of degree < v, for j =1,...,N + N},

and let Py, be the orthogonal projection operator from L3(0, A) to II4 v, so that
setting p = Py f minimises || f —p||2,0,4) over all p € I14 n,,. The mesh Ay 4 is de-
signed to minimise, to a good approximation, the error || f — P f||2,(0,4) in the case
when f € C®(0,00) with |f**+1(s)| = F,41(s), s > 0, where F,;; is defined as in
Theorem 2.6. It achieves this by ensuring that || f — Py, fll2,(y,_..y,) i3 approximately
constant for j = 1,..., N 4+ Ny, i.e. by equidistributing the approximation error
over the intervals of the mesh. That || f — Py fll2,(y,_,,y,) is approximately constant
for the mesh Ay 4 in the case | f*+1)(s)| = F,41(s) can be seen by inspecting the
proof of the following key error estimate.
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A High Wavenumber BEM 13

Theorem 3.2. Suppose that f € C®(0,00) and |f'(s)] < Fi(s), |f@+V(s)] <
F,11(s), s> 0. Then

1+10g1/2A

Ilf = Py fll2,0,4) < Cy N
where the constant C,, depends only on v.

Proof. Throughout the proof let C), > 0 denote a constant whose value depends
only on v, not necessarily the same at each occurence. For A < B and f € Ly(A, B)
let pa,B,, denote the polynomial of degree < v which is the best approximation to
f in the Ls norm. Clearly

lf —paBullaas) <If = f(A)2,a,8)-
If f € C*1[A, B] we have further that
1 = PaBullzan) < Cull £ oo a.my (B — A)7H/2

(see e.g. Prossdorf & Silbermann 1991, lemma 5.21). Now [|f = Py fll3 0 4) =

EN+NA

j=1  €j, where e; := ||f —pyjfl’yj’,,||§’(yj_hyj). To bound ey, as |f'(s)| < Fi(s)
we have

os " 156) - FO)Pds = / N / Cpar

where C' > 0 is an absolute constant. Thus, and since y3 = N~% and ¢ = 1 + 2v/3,

2
ds < Cyi(1 - log® y1),

e1 <CN 3 2(1+4¢*log’? N) < C,N 272,

Forj=2,...,N+Na, e; < Cyly; —yj-1) 3| Fopal2 ) Forj=2,...,N,

J(Yi-1.Y5

. q . q . 21//3
J J—1 q(J
gy ==) (=) <= (= )
Yi —Yj—1 <N> <N> _N<N> ) (3.8)

by the mean value theorem. For v > 1, |[F,41|% (05 15) = = y; ) < (2N/j)™,
while, for v =0, ||F,41]|%, (95-1.y;) = (L —qlog(j — l/N)) Thus, for j =2,..., N,

. C,N—3-2, v>1,
9= C’N3(1—qlog(]T))2, v=0.

For j = N+ 1,...,N + Na, il 10y = Yjo1 s s0 that e; < C((y; —
Yj—1)/yj—1)?" 3. But, for j = N +1,...,N + Ny, it follows from the definition of
the mesh (in particular (3.5) and (3.6)) and (3.8) that

yj_yj—lzyN+1_yN§yN_yN—1S( N >qi§@’
Yj—1 YN YN-1 N-1) N N

so that e; < C, N=372". Thus

N+N 4y
N + Ny
IIf— PNf||2 (0,A) Z ej < Cy <N2+2V + N3+2v )
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14 S.N. Chandler-Wilde et al.

in the case v > 1. In fact (3.9) holds also in the case v = 0 since then

Cy c, [t
Zeﬂ—]\mzl qugN <_/ (1—qlog —= )ds_m (1—qlogt)* dt.

Using (3.7) the result follows from (3.9). O

To form a mesh on the whole interval [a, b] = [to, tn] we place nj +1 mesh points,
Sja,t=1,..,n; +1, onthemterval[] 1,t5], for j =1, .. ’n,Wlthtjl—S]1<
Sj2 < ... < Sjn,+1 = tj. Under the assumption that A; := (f; — ¢;— 1)/2 > 1,
j=1,..,n, wesetn;:= 2(N + N4;) and define a symmetrlc mesh on [t;_1,%;] by

P t~j71+yi,1, ’i:l,...,N+NAj+1,
Pt YaNaNa - =N+ Nag+2,..0.,2(N 4+ Naj) +1

where the points y; are given by (3.4) and (3.5) with A = A; = ({; —t;_1)/2. The
total mesh on [fg, %] is then denoted by

QI:{Sj,l:jzla"'analzl""’nj_'_l}.

Let ex(s) := e*** s € R. Then, in the Galerkin method we propose we shall
seek an approximation to ®*,®x € Vg ,, where

Vo i={oex :0 €Ilg,,},
and

Ho, = {0 € Ly(R) :0|[s;,,.5;mp1) 1S @ polynomial of degree < v,

3

forj=1,...,n,m=1,...n;, and 0|R\[t~0’t~n] = 0}.

Let (-,-) denote the usual inner product on Ly(R). Then our Galerkin method
approximation, ® 5 € Vg ,, is defined by

(®n,p) = (L5, 0) + (K5°®n,p), forall p € Vou; (3.10)

equivalently,
Oy = PyQUS + PyKj ®y, (3.11)

where Py : Ly(R) — Vg, is the operator of orthogonal projection onto Vg ,. Equa-
tion (3.10) can be written explicitly as a system of My linear algebraic equations,
where My is the dimension of Vg 5, i.e. the number of degrees of freedom, given by

n n
My =2w+1)) nj=4@v+1)) (N + Ny,). (3.12)
j=1 j=1
By (3.7), My < 4(v + 1)nN(1 +Nt+qgt logA) Where = (A1 ... A,)Y" is the
geometric mean of Ay, ..., A,. Since A < (A; +...4,)/n=(b— )/2n we have
1 1 k(b —
My < 4(v +1)nN <1+N+§1 og “) (3.13)
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4. Error analysis

We begin by rewriting (3.1) and (3.11) as
' — QK 0" = QU (4.1)

and
Oy — PNK @y = PyQU (4.2)

respectively, where both equations hold in Ls(R). Our goal now is to show that
(4.2) has a unique solution @y, and to establish an error bound on ||®* — ®x||».

From (3.2) and that [|Px> = 1, [[PvK5[l2 < IK5 [l2 < 118 — Belloo/ Re Be.
Thus, arguing as we did to establish the existence and boundedness of (I—QKg“)*1
in §3, we see that (I — PyK5°)~! : Ly(R) — Lo(R) exists, so that (4.2) is uniquely
solvable, and

Re S,
Refe = |8 = Belloo”

provided (3.3) holds. Further, operating on (4.1) with Py, subtracting (4.2), and
rearranging, we see that ®* — &y = (I — PNKgC)’l((I)* — Py ®*) so that

(T = PvK5) || <

(4.3)

Re 8.

d* — @ <
R Ty [

[@% — Py @72, (4.4)

provided (3.3) holds.
If necessary, one can force (3.3) to hold at the cost of changing the surface
impedance outside some finite interval, replacing 8 by 3, where

2 o B(S)a se (fovin]:
Bls) = { B, 5 € R\(Fo, Enl,

with fo < to, f > tn, and . chosen to ensure that |3; — .| < Ref., 5 =1,...,n.
The error estimates derived in Chandler-Wilde et al. (2002), Rahman (2000) quan-
tify the change in u' caused by replacing 8 by f and show convergence of the
perturbed total field, resulting from replacing 8 by £, to the true total field at
every € U as {p — —oo and f, — oo, with . fixed. In fact this convergence is
uniform on bounded sets, so that f., iy, and £, can be chosen so that the origi-
nal problem is replaced by one for which (3.3) holds and whose solution, in any
given bounded region of interest, is arbitrarily close to the solution of the original
problem. For this reason and in order to focus on other difficulties (namely efficient
solution for large k), we will assume that (3.3) holds in our analysis. In any case, in
§5 we will present numerical results suggesting that the Galerkin scheme we propose
is stable and convergent even when (3.3) does not hold. In this case the bound (4.3)
does not apply however.

It finally just remains to bound [|®* — Py®*||2, showing that our mesh and
approximation space are well-adapted to approximate ®*. We introduce a further
projection operator, Py, the operator of orthogonal projection from L(R) onto
IIg .. A consequence of theorem 3.2 is the following error estimate.
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16 S.N. Chandler-Wilde et al.

Theorem 4.1. Suppose that f € Cm((&,l;)\{fl,...,fn,l}), and that, for some
c>0,

')l < emax(Fi(s — 1), Fi(t; — 9)),
1)) < emax(Fuga (s — £io1), Fuga (5 — 5)),
for s € (tj—1,t;), j=1,...,n. Then

! 1/2
?\WH (1+log1/2 A),

where A = (Ay...A,)"/™, and the constant C!, depends only on v.

If = Pnflls a5 <

Proof. Setting #; = (¢; +1;_1)/2, and recalling that ; is one of the mesh points,
for j =1,...,n, it holds that ||f — P]’\,f”2 @h = 2?21(132‘ +73), where [; := || f —
P,y wlla@o iy, T = Lf =i, 0112, i) and where we have used the notation
pA,B,» from the proof of theorem 3.2 to denote the best polynomial approximation
to f of degree < v on the interval (A4, B). By theorem 3.2, [; and r; are both
< ¢C,N=""1(1 4 log'/? 4;). Thus, and since (1 +log'/? 4;)? < 2(1 + log 4;), the
result follows. O

To use the above error estimate, we note from (2.24) that ®* = e, fi +e_f_,

where ~

f (S) — f;'(s—tj_l), SE(t] 1,t] j=1,. n,

o, s € R\ (o, ),
" (—5). se (i)

L fj_tj—S, EXS t] 1,t j=1,. n,

J-s):= { 0, s € R\(fo, ).
Further, provided (2.25) holds for some € > 0, it follows from theorem 2.6 that f
and f_ both satisfy the conditions of theorem 4.1, with a constant ¢ > 0 which
depends only on v and e. Thus, applying theorem 4.1, we have that

nl/2
15 = Phefills = 15 = Phefila ) < Crmor

if (2.25) holds, where the constant C' > 0 depends only on v and e. Further, the
same bound holds on ||f— — Py f-||2. But ex Py fy + e—Pyf- € Vq,. Thus, and
since Py®* is the best approximation to ®* in Vg ,,

(1+log!/? 4),

[®% — Pn®7|l2
< 19" = (exPyfr +e-Pyf)ll2 = llew(f+ = Pyfs) + e (f- = Pyfo)ll

Cn 1/2
< lletlloollfs = Pafilla + llellooll f~ = Prf-ll2 < 2N"+1

(1+1og'/? A).

We have shown the following result.

Theorem 4.2. Suppose that (2.25) holds, for some ¢ > 0. Then it holds that
nl/2

S Nt

where the constant C' > 0 depends only on v and e.

|®* — Py®*||s < (1+1og'/? A),
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Combining this result with the stability bound (4.4) and the bound (3.13) on
the number of degrees of freedom My, we obtain our final error estimate for the
approximation of ® by ® .

Theorem 4.3. Provided (2.25) holds, for some ¢ > 0, and (3.8) is satisfied, we
have that
Cnl/2(1 +log'/? A)
(ReBe — 1B = Belloo) N¥ L
Cln(1 + log(k(b — a) /n))]"+9/2
(Re e = 1|18 = Belloo) MN"*

where the constant C' > 0 depends only on v and e.

IN

”(I) - (I)N||2,(aj;) = ”q)* - (I’NHQ

5. Implementation and numerical results

Throughout this section, we will restrict our attention to the case v = 0. For higher
values of v the implementation of the scheme is similar and the coefficients can be
evaluated in an analogous way. However, the formulae will be considerably more
complicated. Recalling (3.10), the equation we wish to solve is then

(®x,p) = (K5°®n,p) = (¥, p),  forall p € Voo (5.1)

Writing ® v as a linear combination of the basis functions of Vi o, we have ®(s) =
Z]]Vi]\l’ vjp;(s), where My is given by (3.12) and p; is the jth basis function,

p(s) = { eis.x[sk‘l—hsk‘z)(s)a ,] =2] — 1,
J e*lsx[s,e‘lﬂ,sk‘l)(s), ] = 2[’

for | = an_:ll Nm+1,..., Eﬁlzl Nm, k =1,...,n, where xy,, ,,) denotes the char-
acteristic function of the interval [y1,y2). Equation (5.1) then becomes

My
Zvj((pjapk) - (Kgcpjapk)) = (\I,gcapk)a k= 11 . '7MN7
j=1

and thus we need to determine (p;, px), (Kgcpj, pr)) and (\Ilg , k). We can evaluate

(pj, pr) analytically. To evaluate (Kg“pj, pr) and (\Ilgc,pk) most of the integrations
can be carried out analytically, but we need to compute some integrals numerically.
The most difficult of these take the forms

(i -nd) [T A=) YA
/0 r(r — 2i) d’/o r2 d’/o r(r — 2i) dr,

where s < 0 and J(r) = r'/2(r — 20)1/2/(r —ia, )(r —ia_), with 4+ = 1 F /1 — 32
as in §2. These integrals are similar in difficulty to the integral representation for
the Green’s function, equation (2.7), for which very efficient numerical schemes are
proposed in Chandler-Wilde & Hothersall (1995a). In particular, we remark that
the integrands are not oscillatory; the oscillating part of the integrands is removed
by the integrations which are carried out analytically.
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18 S.N. Chandler-Wilde et al.

As a first numerical example we take § = 7/4, n = 1, and

[ 0.505 —0.3i, sé€[-mA,mAl,
Bls) = { 1 s & [-m\, m}],

for m = 5, 10, 20, 40, 80, 160, 320, 640, 1280, 2560 and 5120, where k =1 and A = 27
is the wavelength. Assumption (3.3) is satisfied so that theorem 4.3 holds. For each
value of m, we compute ® with v =0 and N = 2,4, 8,16, 64, taking the solution
with V = 64 to be the “exact” solution, for the purpose of computing errors.

In figures 2 and 3 we plot |®x]| for N = 4 and N = 64 (the "exact” solution)
for m = 10 and m = 5120 respectively. Note the logarithmic scale. We also plot
the grid points of ). As m increases, with N fixed, the density of grid points near
the discontinuities in impedance does not vary, and only a few more points are
added near the centre of the interval. The value of |®]| is highly peaked at the
discontinuities in impedance. Recalling that ® is a correction term, namely the
difference between the true solution and the solution that there would be if the
impedance was constant everywhere, the reason for this is clear.

10°

-1

10

-10 -8 -6 -4 -2 (0] 2 4 6 8 10

Figure 2. Plot of |®n|, N =4 and N = 64 for m = 10, so that b —a = 20\

The relative Ly errors ||®64 — ®n||2/||P64||2 are shown in table 1. (All Ly norms
are computed by approximating by discrete Lo norms, sampling at 100000 evenly
spaced points in the relevant interval for the function whose norm is to be evalu-
ated.) The estimated order of convergence is given by

|| @64 — P ll2 )
|®6s — Panll2/)

As v = 0 we would expect, from theorem 4.3, that EOC = 1. In fact the convergence
rate is better than this. The number of degrees of freedom for each example is

EOC :=log, <
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Figure 3. Plot of |®x|, N =4 and N = 64 for m = 5120, so that b — a = 10240\

19

b—a =20\, b—a = 10240\

N | My | |28 — Po4l]2/]|Pea]l2 | EOC | My | ||~ = Peal2/||Ps4ll2 | EOC
2 32 1.392 x 1071 1.7 68 1.404 x 1071 1.7
4 76 4.191 x 1072 1.7 | 164 4.324 x 1072 1.7
8 | 160 1.285 x 1072 1.8 | 344 1.331 x 1072 1.7

16 | 324 3.619 x 1073 708 4.006 x 1073

64 | 1308 2896

Table 1. || ®n — Peall2/||Pe4ll2 for m = 10 and m = 5120, and increasing N.

denoted by Mpy. Note that the relative Lo error is almost the same for the two
cases b — a = 20\ and b — a = 10240)\.

In table 2 we fix the value of N at N = 8 and show ||®n — Pg4l|2/||Ps4l|2 and
also ||®n — P42 for increasing values of m = (b — a)/2\. As m increases, the
number of degrees of freedom increases only logarithmically, while both the relative
and actual error remain roughly constant. For m = 5120 the interval is of length
greater than 10000 wavelengths, and yet we achieve roughly one per cent relative
error with only 400 degrees of freedom.

As a second numerical example we take § = 7 /4, n = 3, and

0.5—2i,  se[-10),0],
)1, s € [0, 10)],
BleI =13 2_ 0 s € [10X, 50)],
0.505— 0.3 s ¢ [—10), 50,

where £k = 1 and A = 27 is the wavelength. In this case assumption (3.3) is not
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20 S.N. Chandler- Wilde et al.
(b—a)/X | Mn | ||®s — Peall2/||Pealla | [|Ps — Poull2
10 | 136 1.228 x 1072 | 5.579 x 1073
20 | 160 1.285 x 1072 | 5.843 x 1072
40 | 180 1.325 x 1072 | 6.027 x 1073
80 | 200 1.345 x 1072 | 6.118 x 1073
160 | 220 1.356 x 1072 | 6.167 x 103
320 | 240 1.364 x 1072 | 6.202 x 103
640 | 260 1.366 x 1072 | 6.211 x 1072
1280 | 284 1.364 x 1072 | 6.204 x 103
2560 | 304 1.355 x 1072 | 6.162 x 103
5120 | 324 1.342 x 1072 | 6.097 x 103
10240 | 344 1.331 x 1072 | 6.028 x 103

Table 2. ||®s — Peall2/||Poall2 for increasing interval length.

satisfied. We compute @ for v = 0 and N = 2,4, 8,16, 32, taking the solution with
N = 32 to be the “exact” solution, for the purpose of computing errors.

In figure 4 we plot |®n| for N =4 and N = 32 (the “exact” solution). We also
plot the grid points of Q. The way in which the grid on each interval [t;_1,t;] is
dependent on t; — t;_; can be seen. Specifically, we point out that the density of
grid points is the same monotonic decreasing function of distance to the nearest

impedance discontinuity on each interval.

10°

10

20
s/A

20
s/N

Figure 4. Plot of |®n|, N =4 and N = 32, second example

The relative Ly errors, || P32 — ®n||2/||P32||2, are shown in table 3. The errors
and convergence rate achieved are close to those in table 1 for the same values of
N. This suggests that the numerical scheme is stable and convergent in this case,
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N | My | |25 — ®32|2/|[Ps2]]2 | EOC
2 92 2.886 x 1071 1.8
4| 212 8.450 x 1072 2.2
8 | 452 1.837 x 1072 2.0

16 | 924 4513 x 1073

32 | 1866

Table 3. [|®n(s) — ®32(s)||2/||P32]l2 as N increases, second example

even though assumption (3.3), needed for our proof of stability of the numerical
scheme and of the error estimate of theorem 4.3, does not hold.

6. Extension to more general scattering problems

In this paper we have presented a Galerkin boundary element method for a prob-
lem of acoustic scattering by an unbounded surface with piecewise constant surface
impedance, and we have demonstrated via both theoretical analysis and numerical
examples that the number of degrees of freedom required for an accurate solution
depends only logarithmically on the wavenumber. Although the method and anal-
ysis described here is for a very specific scattering problem, similar ideas can be
applied to solve problems of scattering by more general objects. In Chandler-Wilde
and Langdon (2003, in preparation), the authors consider the problem of scattering
in 2D by convex polygons. To give a flavour of how the ideas presented here extend
to this case, we briefly discuss this extension now.

Consider the problem of scattering of a given incoming acoustic plane wave u’
by a sound-soft bounded convex polygon ). In the spirit of the geometrical theory
of diffraction, one expects, on a typical side PQ, incident, reflected and diffracted
ray contributions, as indicated in figure 5.

Figure 5. Acoustic scattering by a convex polygon. A typical incident and reflected ray
are shown as well as some of the rays arising from diffraction at the corners.

The total acoustic field u? satisfies the Helmholtz equation Au! + k?u? = 0 in
R?\Q, with boundary data u! = 0 on I := 91, supplemented with an appropriate
Sommerfeld radiation condition to ensure uniqueness of solution. A direct integral
equation formulation leads to the following second kind boundary integral equation
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22 S.N. Chandler-Wilde et al.

for the unknown complementary boundary data du®/dn:

%%ln(w) +/F <% + in@(x,y)) %ln(y) ds(y) = f(z), =z € T'\{corners},
(6.1)

with f := du’/On + inu’, n the normal direction directed out of Q,  a coupling

parameter, and ®(z,y) := (i/4)H(()1)(k|x — y|) the standard fundamental solution
for the Helmholtz equation.

To solve (6.1) for du'/On a similar Galerkin boundary element method approach
to that described in this paper can be used. On each side of the polygon, we begin
by separating off the leading order behaviour as k — oo, namely the known incident
and reflected waves. (On sides in the shadow zone, there are no incident and reflected
waves to subtract, and this step is omitted.) The remaining scattered wave, which
consists of the contributions from the diffracted waves at the corners, can then be
represented as a product of oscillatory plane waves and non-oscillatory functions.
For example, on the side v between corners P and @ in figure 5, by applying Green’s
theorem in the half-plane to the left of the line I'y Uy UT _, which is the extension
of v, one finds that (cf. equation(2.13))

out 2/ 0?®(z,y)

%(a:) = known leading order behaviour + )ut(y) ds(y), = € 7,

r+ur,8n($)8n(y
(6.2)

where I' and I'_ are the half-lines below P and above @, respectively, in figure 5.
If we represent the side v parametrically as P + s(Q — P)/|Q — P|, s € [0,|P — Q]
then on the side v it follows that

t
%%in(s) = known leading order behaviour + e'**v, (s) 4+ e #5p_(s),
where the terms e*$v, (s) and e ¥3y_(s) are the integrals over I'y and I'_, respec-
tively, in equation (6.2), and can be thought of as the contribution to dut/dn on
7 due to the diffracted rays travelling from P to () and from @ to P, respectively,
including all multiply diffracted ray components. Explicitly, from (6.2) it follows
that
ik [° —ikt
v =y [ ulhls = )e Mo at,

— 00
where ¢(t) = u!(P + t(Q — P)/|Q — P|), t < 0, denotes the total field on T'; at
distance [¢| from P, and p(s) := e‘i|s‘Hl(1)(|s|)/|s|. A similar explicit expression
holds for v_.

To achieve good approximation with a low number of degrees of freedom, one can
then approximate vy and v_ by piecewise polynomials, using a similar graded mesh
on each side of T" to that used on each constant impedance interval [¢;_1,¢;] in §3,
with larger elements away from the corners of the polygon and the mesh grading
near the corners depending on the internal angles. The construction of such a mesh
relies on the derivation of rigorous regularity results for vy, similar to those for
fji achieved in theorem 2.6 above. These will appear in detail in Chandler-Wilde
and Langdon (2003, in preparation), but we point out that, for s > 1, u(s) satisfies
exactly the same bound as that on #g(s) in lemma 2.5, from which it follows that,
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arguing exactly as in the proof of theorem 2.6,
ot ()] < ej(ks) /2, ks> 1,

for j = 0,1,.... From this bound and the argument of the proof of theorem 3.2
it follows that, except in a neighbourhood of the corners which is of the order of
the wavelength, the appropriate mesh grading on -~y is exactly that used on each
constant impedance interval [¢;_1,¢;] in the method of section 3.

This work was supported by the EPSRC via grant GR/M59433/01.
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