3,425 research outputs found
The Lorentzian distance formula in noncommutative geometry
For almost twenty years, a search for a Lorentzian version of the well-known
Connes' distance formula has been undertaken. Several authors have contributed
to this search, providing important milestones, and the time has now come to
put those elements together in order to get a valid and functional formula.
This paper presents a historical review of the construction and the proof of a
Lorentzian distance formula suitable for noncommutative geometry.Comment: 16 pages, final form, few references adde
Cosmological quantum entanglement
We review recent literature on the connection between quantum entanglement
and cosmology, with an emphasis on the context of expanding universes. We
discuss recent theoretical results reporting on the production of entanglement
in quantum fields due to the expansion of the underlying spacetime. We explore
how these results are affected by the statistics of the field (bosonic or
fermionic), the type of expansion (de Sitter or asymptotically stationary), and
the coupling to spacetime curvature (conformal or minimal). We then consider
the extraction of entanglement from a quantum field by coupling to local
detectors and how this procedure can be used to distinguish curvature from
heating by their entanglement signature. We review the role played by quantum
fluctuations in the early universe in nucleating the formation of galaxies and
other cosmic structures through their conversion into classical density
anisotropies during and after inflation. We report on current literature
attempting to account for this transition in a rigorous way and discuss the
importance of entanglement and decoherence in this process. We conclude with
some prospects for further theoretical and experimental research in this area.
These include extensions of current theoretical efforts, possible future
observational pursuits, and experimental analogues that emulate these cosmic
effects in a laboratory setting.Comment: 23 pages, 2 figures. v2 Added journal reference and minor changes to
match the published versio
Threshold Saturation in Spatially Coupled Constraint Satisfaction Problems
We consider chains of random constraint satisfaction models that are
spatially coupled across a finite window along the chain direction. We
investigate their phase diagram at zero temperature using the survey
propagation formalism and the interpolation method. We prove that the SAT-UNSAT
phase transition threshold of an infinite chain is identical to the one of the
individual standard model, and is therefore not affected by spatial coupling.
We compute the survey propagation complexity using population dynamics as well
as large degree approximations, and determine the survey propagation threshold.
We find that a clustering phase survives coupling. However, as one increases
the range of the coupling window, the survey propagation threshold increases
and saturates towards the phase transition threshold. We also briefly discuss
other aspects of the problem. Namely, the condensation threshold is not
affected by coupling, but the dynamic threshold displays saturation towards the
condensation one. All these features may provide a new avenue for obtaining
better provable algorithmic lower bounds on phase transition thresholds of the
individual standard model
10 simple rules to create a serious game, illustrated with examples from structural biology
Serious scientific games are games whose purpose is not only fun. In the
field of science, the serious goals include crucial activities for scientists:
outreach, teaching and research. The number of serious games is increasing
rapidly, in particular citizen science games, games that allow people to
produce and/or analyze scientific data. Interestingly, it is possible to build
a set of rules providing a guideline to create or improve serious games. We
present arguments gathered from our own experience ( Phylo , DocMolecules ,
HiRE-RNA contest and Pangu) as well as examples from the growing literature on
scientific serious games
Leading-order determination of the gluon polarisation from semi-inclusive deep inelastic scattering data
Using a novel analysis technique, the gluon polarisation in the nucleon is
re-evaluated using the longitudinal double-spin asymmetry measured in the cross
section of semi-inclusive single-hadron muoproduction with photon virtuality
. The data were obtained by the COMPASS experiment at
CERN using a 160 GeV/ polarised muon beam impinging on a polarised LiD
target. By analysing the full range in hadron transverse momentum ,
the different -dependences of the underlying processes are separated
using a neural-network approach. In the absence of pQCD calculations at
next-to-leading order in the selected kinematic domain, the gluon polarisation
is evaluated at leading order in pQCD at a hard scale of . It is determined in three intervals
of the nucleon momentum fraction carried by gluons, , covering the
range ~ and does not exhibit a significant
dependence on . The average over the three intervals, at
, suggests that the gluon polarisation
is positive in the measured range.Comment: 14 pages, 6 figure
Primary brain calcification: an international study reporting novel variants and associated phenotypes.
Primary familial brain calcification (PFBC) is a rare cerebral microvascular calcifying disorder with a wide spectrum of motor, cognitive, and neuropsychiatric symptoms. It is typically inherited as an autosomal-dominant trait with four causative genes identified so far: SLC20A2, PDGFRB, PDGFB, and XPR1. Our study aimed at screening the coding regions of these genes in a series of 177 unrelated probands that fulfilled the diagnostic criteria for primary brain calcification regardless of their family history. Sequence variants were classified as pathogenic, likely pathogenic, or of uncertain significance (VUS), based on the ACMG-AMP recommendations. We identified 45 probands (25.4%) carrying either pathogenic or likely pathogenic variants (n = 34, 19.2%) or VUS (n = 11, 6.2%). SLC20A2 provided the highest contribution (16.9%), followed by XPR1 and PDGFB (3.4% each), and PDGFRB (1.7%). A total of 81.5% of carriers were symptomatic and the most recurrent symptoms were parkinsonism, cognitive impairment, and psychiatric disturbances (52.3%, 40.9%, and 38.6% of symptomatic individuals, respectively), with a wide range of age at onset (from childhood to 81 years). While the pathogenic and likely pathogenic variants identified in this study can be used for genetic counseling, the VUS will require additional evidence, such as recurrence in unrelated patients, in order to be classified as pathogenic
Search for light bosons in decays of the 125 GeV Higgs boson in proton-proton collisions at root s=8 TeV
Peer reviewe
Understanding the Determinants of Weight-Related Quality of Life among Bariatric Surgery Candidates
Obesity and its relation to quality of life are multifaceted. The purpose of this paper was to contribute evidence to support a framework for understanding the impact of obesity on quality of life in 42 morbidly obese subjects considering a wide number of potential determinants. A model of weight-related quality of life (WRQL) was developed based on the Wilson-Cleary model, considering subjects' weight characteristics, arterial oxygen pressure (PaO2), walking capacity (6-minute walk test, 6MWT), health-related quality of life (HRQL; Physical and Mental Component Summaries of the SF-36 PCS/MCS), and WRQL. The model of WRQL was tested with linear regressions and a path analysis, which showed that as PaO2 at rest increased 6MWT increased. 6MWT was positively associated with the PCS, which in turn was positively related to WRQL along with the MCS. The model showed good fit and explained 38% of the variance in WRQL
Search for heavy gauge W ' bosons in events with an energetic lepton and large missing transverse momentum at root s=13TeV
Peer reviewe
- …
