438 research outputs found
Prevalence of QoI resistance and mtDNA diversity in the Irish Zymoseptoria tritici population
peer-reviewedThe emergence and spread of Quinone outside Inhibitor (QoI) fungicide resistance in the Irish Zymoseptoria tritici population in the early 2000s had immediate impacts on the efficacy of the entire group of fungicides for the control of septoria tritici blotch. As a result, a dramatic reduction in the quantities applied to winter wheat occurred in the following seasons. Even in the absence of these fungicides, the frequency of the resistance allele, G143A in the pathogens mtDNA has remained exceptionally high (>97%), and as such, it can be anticipated that continued poor efficacy of current QoI fungicides will be observed. Amongst the isolates with G143A, differences in sensitivity to the QoI pyraclostrobin were observed in vitro. The addition of the alternative oxidase (AOX) inhibitor salicylhydroxamic acid increased sensitivity in these isolates, suggesting some continued impairment of respiration by the QoI fungicides, albeit weak. Interestingly, amongst those tested, the strains from a site with a high frequency of inserts in the MFS1 transporter gene known to enhance QoI efflux did not exhibit this increase in sensitivity. A total of 19 mtDNA haplotypes were detected amongst the 2017 strain collection. Phylogenetic analysis confirmed the suggestion of a common ancestry of all the haplotypes, even though three of the haplotypes contained at least one sensitive strain
A comparison of baleen whale density estimates derived from overlapping satellite imagery and a shipborne survey
As whales recover from commercial exploitation, they are increasing in abundance in habitats that they have been absent from for decades. However, studying the recovery and habitat use patterns of whales, particularly in remote and inaccessible regions, frequently poses logistical and economic challenges. Here we trial a new approach for measuring whale density in a remote area, using Very-High-Resolution WorldView-3 satellite imagery. This approach has capacity to provide sightings data to complement and assist traditional sightings surveys. We compare at-sea whale density estimates to estimates derived from satellite imagery collected at a similar time, and use suction-cup archival logger data to make an adjustment for surface availability. We demonstrate that satellite imagery can provide useful data on whale occurrence and density. Densities, when unadjusted for surface availability are shown to be considerably lower than those estimated by the ship survey. However, adjusted for surface availability and weather conditions (0.13 whales per km2, CVâ=â0.38), they fall within an order of magnitude of those derived by traditional line-transect estimates (0.33 whales per km2, CVâ=â0.09). Satellite surveys represent an exciting development for high-resolution image-based cetacean observation at sea, particularly in inaccessible regions, presenting opportunities for ongoing and future research
Svestka's Research: Then and Now
Zdenek Svestka's research work influenced many fields of solar physics,
especially in the area of flare research. In this article I take five of the
areas that particularly interested him and assess them in a "then and now"
style. His insights in each case were quite sound, although of course in the
modern era we have learned things that he could not readily have envisioned.
His own views about his research life have been published recently in this
journal, to which he contributed so much, and his memoir contains much
additional scientific and personal information (Svestka, 2010).Comment: Invited review for "Solar and Stellar Flares," a conference in honour
of Prof. Zden\v{e}k \v{S}vestka, Prague, June 23-27, 2014. This is a
contribution to a Topical Issue in Solar Physics, based on the presentations
at this meeting (Editors Lyndsay Fletcher and Petr Heinzel
Geometry and material effects in Casimir physics - Scattering theory
We give a comprehensive presentation of methods for calculating the Casimir
force to arbitrary accuracy, for any number of objects, arbitrary shapes,
susceptibility functions, and separations. The technique is applicable to
objects immersed in media other than vacuum, to nonzero temperatures, and to
spatial arrangements in which one object is enclosed in another. Our method
combines each object's classical electromagnetic scattering amplitude with
universal translation matrices, which convert between the bases used to
calculate scattering for each object, but are otherwise independent of the
details of the individual objects. This approach, which combines methods of
statistical physics and scattering theory, is well suited to analyze many
diverse phenomena. We illustrate its power and versatility by a number of
examples, which show how the interplay of geometry and material properties
helps to understand and control Casimir forces. We also examine whether
electrodynamic Casimir forces can lead to stable levitation. Neglecting
permeabilities, we prove that any equilibrium position of objects subject to
such forces is unstable if the permittivities of all objects are higher or
lower than that of the enveloping medium; the former being the generic case for
ordinary materials in vacuum.Comment: 44 pages, 11 figures, to appear in upcoming Lecture Notes in Physics
volume in Casimir physic
SN 2012ec: mass of the progenitor from PESSTO follow-up of the photospheric phase
We present the results of a photometric and spectroscopic monitoring campaign of SN 2012ec, which exploded in the spiral galaxy NGC 1084, during the photospheric phase. The photometric light curve exhibits a plateau with luminosity L = 0.9 Ă 1042âergâsâ1 and duration âŒ90 d, which is somewhat shorter than standard Type II-P supernovae (SNe). We estimate the nickel mass M(56Ni) = 0.040 ± 0.015âMâ from the luminosity at the beginning of the radioactive tail of the light curve. The explosion parameters of SN 2012ec were estimated from the comparison of the bolometric light curve and the observed temperature and velocity evolution of the ejecta with predictions from hydrodynamical models. We derived an envelope mass of 12.6âMâ, an initial progenitor radius of 1.6 Ă 1013âcm and an explosion energy of 1.2âfoe. These estimates agree with an independent study of the progenitor star identified in pre-explosion images, for which an initial mass of M = 14-22âMâ was determined. We have applied the same analysis to two other Type II-P SNe (SNe 2012aw and 2012A), and carried out a comparison with the properties of SN 2012ec derived in this paper. We find a reasonable agreement between the masses of the progenitors obtained from pre-explosion images and masses derived from hydrodynamical models. We estimate the distance to SN 2012ec with the standardized candle method (SCM) and compare it with other estimates based on other primary and secondary indicators. SNe 2012A, 2012aw and 2012ec all follow the standard relations for the SCM for the use of Type II-P SNe as distance indicators
The boomerang effect of radicalism in Discursive Psychology: A critical overview of the controversy with the Social Representations Theory.
This article provides a critical overview of the controversy between the Radical approach to Discursive Psychology (RDP) and the Social Representations Theory (SRT) and aims: a)?to show what is potentially complementary and contradictory in Discursive Psychology (DP) and the Social Representations Theory, when and why they are incompatible, and whether and how it is possible and/or desirable to integrate these two approaches. b)?to describe how the radicalism of the socio-constructionist thesis upheld by Discourse Analysis can give rise to several hard-to-solve problems, which may then be translated into a boomerang effect. In the final section, it highlights interest in dialog and âcross-fertilizationâ between researchers inspired by the less radical approach to discursive psychology and those inspired by the Social Representations Theory, pointing out the effect of methodological implications that would ensue
Luminous Red Novae: Stellar Mergers or Giant Eruptions?
We present extensive datasets for a class of intermediate-luminosity optical transients known as luminous red novae. They show double-peaked light curves, with an initial rapid luminosity rise to a blue peak (at -13 to -15 mag), which is followed by a longer-duration red peak that sometimes is attenuated, resembling a plateau. The progenitors of three of them (NGC 4490-2011OT1, M 101-2015OT1, and SNhunt248), likely relatively massive blue to yellow stars, were also observed in a pre-eruptive stage when their luminosity was slowly increasing. Early spectra obtained during the first peak show a blue continuum with superposed prominent narrow Balmer lines, with P Cygni profiles. Lines of Fe II are also clearly observed, mostly in emission. During the second peak, the spectral continuum becomes much redder, H alpha is barely detected, and a forest of narrow metal lines is observed in absorption. Very late-time spectra (similar to 6 months after blue peak) show an extremely red spectral continuum, peaking in the infrared (IR) domain. H alpha is detected in pure emission at such late phases, along with broad absorption bands due to molecular overtones (such as TiO, VO). We discuss a few alternative scenarios for luminous red novae. Although major instabilities of single massive stars cannot be definitely ruled out, we favour a common envelope ejection in a close binary system, with possibly a final coalescence of the two stars. The similarity between luminous red novae and the outburst observed a few months before the explosion of the Type IIn SN 2011ht is also discussed
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in âs = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fbâ1 of protonâproton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC
Measurements of inclusive jet suppression in heavy ion collisions at the LHC
provide direct sensitivity to the physics of jet quenching. In a sample of
lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated
luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with
a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the
transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the
anti-kt algorithm with values for the distance parameter that determines the
nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of
the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp.
Jet production is found to be suppressed by approximately a factor of two in
the 10% most central collisions relative to peripheral collisions. Rcp varies
smoothly with centrality as characterized by the number of participating
nucleons. The observed suppression is only weakly dependent on jet radius and
transverse momentum. These results provide the first direct measurement of
inclusive jet suppression in heavy ion collisions and complement previous
measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables,
submitted to Physics Letters B. All figures including auxiliary figures are
available at
http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02
- âŠ