475 research outputs found

    Current clinical practice in disabling and chronic migraine in the primary care setting: results from the European My-LIFE anamnesis survey.

    Get PDF
    Migraine is a prevalent and disabling headache disorder that affects more than 1.04 billion individuals world-wide. It can result in reduction in quality of life, increased disability, and high socio-economic burden. Nevertheless, and despite the availability of evidence-based national and international guidelines, the management of migraine patients often remains suboptimal, especially for chronic migraine (CM) patients. My-LIFE anamnesis project surveyed 201 General practitioners (GPs) from 5 European countries (France, Germany, Italy, Spain, and the UK) with the aim of understanding chronic migraine (CM) patients' management in the primary care setting. In our survey, GPs diagnosed episodic migraine (EM) more often than CM (87% vs 61%, p < 0.001). We found that many CM patients were not properly managed or referred to specialists, in contrast to guidelines recommendations. The main tools used by primary-care physicians included clinical interview, anamnesis guide, and patient diary. Tools used at the first visit differed from those used at follow-up visits. Up to 82% of GPs reported being responsible for management of patients diagnosed with disabling or CM and did not refer them to a specialist. Even when the GP had reported referring CM patients to a specialist, 97% of them were responsible for their follow-up. Moreover, the treatment prescribed, both acute and preventive, was not in accordance with local and international recommendations. GPs reported that they evaluated the efficacy of the treatment prescribed mainly through patient perception, and the frequency of follow-up visits was not clearly established in the primary care setting. These results suggest that CM is underdiagnosed and undertreated; thereby its management is suboptimal in the primary care. There is a need of guidance in the primary care setting to both leverage the management of CM patients and earlier referral to specialists, when appropriate

    Magnetic field diagnostics and spatio-temporal variability of the solar transition region

    Full text link
    Magnetic field diagnostics of the transition region from the chromosphere to the corona faces us with the problem that one has to apply extreme UV spectro-polarimetry. While for coronal diagnostic techniques already exist through infrared coronagraphy above the limb and radio observations on the disk, for the transition region one has to investigate extreme UV observations. However, so far the success of such observations has been limited, but there are various projects to get spectro-polarimetric data in the extreme UV in the near future. Therefore it is timely to study the polarimetric signals we can expect for such observations through realistic forward modeling. We employ a 3D MHD forward model of the solar corona and synthesize the Stokes I and Stokes V profiles of C IV 1548 A. A signal well above 0.001 in Stokes V can be expected, even when integrating for several minutes in order to reach the required signal-to-noise ratio, despite the fact that the intensity in the model is rapidly changing (just as in observations). Often this variability of the intensity is used as an argument against transition region magnetic diagnostics which requires exposure times of minutes. However, the magnetic field is evolving much slower than the intensity, and thus when integrating in time the degree of (circular) polarization remains rather constant. Our study shows the feasibility to measure the transition region magnetic field, if a polarimetric accuracy on the order of 0.001 can be reached, which we can expect from planned instrumentation.Comment: Accepted for publication in Solar Physics (4.Mar.2013), 19 pages, 9 figure

    Launch of the Space experiment PAMELA

    Full text link
    PAMELA is a satellite borne experiment designed to study with great accuracy cosmic rays of galactic, solar, and trapped nature in a wide energy range protons: 80 MeV-700 GeV, electrons 50 MeV-400 GeV). Main objective is the study of the antimatter component: antiprotons (80 MeV-190 GeV), positrons (50 MeV-270 GeV) and search for antimatter with a precision of the order of 10^-8). The experiment, housed on board the Russian Resurs-DK1 satellite, was launched on June, 15, 2006 in a 350*600 km orbit with an inclination of 70 degrees. The detector is composed of a series of scintillator counters arranged at the extremities of a permanent magnet spectrometer to provide charge, Time-of-Flight and rigidity information. Lepton/hadron identification is performed by a Silicon-Tungsten calorimeter and a Neutron detector placed at the bottom of the device. An Anticounter system is used offline to reject false triggers coming from the satellite. In self-trigger mode the Calorimeter, the neutron detector and a shower tail catcher are capable of an independent measure of the lepton component up to 2 TeV. In this work we describe the experiment, its scientific objectives and the performance in the first months after launch.Comment: Accepted for publication on Advances in Space Researc

    Beyond the Average Brain: Individual Differences in Social Brain Development are Associated with Friendship Quality

    Get PDF
    We tested whether adolescents differ from each other in the structural development of the social brain, and whether individual differences in social brain development predicted variability in friendship quality development. Adolescents (N = 299, Mage T1 = 13.98 years) were followed across three bi-annual waves. We analysed self-reported friendship quality with the best friend at T1 and T3, and bilateral measures of surface area and cortical thickness of the medial prefrontal cortex (mPFC), posterior superior temporal sulcus (pSTS), temporo-parietal junction (TPJ), and precuneus across all waves. At the group level, growth curve models confirmed non-linear decreases of surface area and cortical thickness in social brain regions. We identified substantial individual differences in levels and change rates of social brain regions, especially for surface area of the mPFC, pSTS, and TPJ. Change rates of cortical thickness varied less between persons. Higher levels of mPFC surface area and cortical thickness predicted stronger increases in friendship quality over time. Moreover, faster cortical thinning of mPFC surface area predicted a stronger increase in friendship quality. Higher levels of TPJ cortical thickness predicted lower friendship quality. Together, our results indicate heterogeneity in social brain development and how this variability uniquely predicts friendship quality development

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02

    Interacting supernovae and supernova impostors. LSQ13zm: an outburst heralds the death of a massive star

    Get PDF
    We report photometric and spectroscopic observations of the optical transient LSQ13zm. Historical data reveal the presence of an eruptive episode (that we label as ‘2013a’) followed by a much brighter outburst (‘2013b’) three weeks later, that we argue to be the genuine supernova explosion. This sequence of events closely resemble those observed for SN 2010mc and (in 2012) SN 2009ip. The absolute magnitude reached by LSQ13zm during 2013a (MR = ?14.87 ± 0.25?mag) is comparable with those of supernova impostors, while that of the 2013b event (MR = ?18.46 ± 0.21?mag) is consistent with those of interacting supernovae. Our spectra reveal the presence of a dense and structured circumstellar medium, probably produced through numerous pre-supernova mass-loss events. In addition, we find evidence for high-velocity ejecta, with a fraction of gas expelled at more than 20 000?km s?1. The spectra of LSQ13zm show remarkable similarity with those of well-studied core-collapse supernovae. From the analysis of the available photometric and spectroscopic data, we conclude that we first observed the last event of an eruptive sequence from a massive star, likely a Luminous Blue Variable, which a short time later exploded as a core-collapse supernova. The detailed analysis of archival images suggest that the host galaxy is a star-forming Blue Dwarf Compact Galaxy
    • 

    corecore