630 research outputs found

    Ligand-binding properties and subcellular localization of maize cytokinin receptors

    Get PDF
    The ligand-binding properties of the maize (Zea mays L.) cytokinin receptors ZmHK1, ZmHK2, and ZmHK3a have been characterized using cytokinin binding assays with living cells or membrane fractions. According to affinity measurements, ZmHK1 preferred N6-(Δ2-isopentenyl)adenine (iP) and had nearly equal affinities to trans-zeatin (tZ) and cis-zeatin (cZ). ZmHK2 preferred tZ and iP to cZ, while ZmHK3a preferred iP. Only ZmHK2 had a high affinity to dihydrozeatin (DZ). Analysis of subcellular fractions from leaves and roots of maize seedlings revealed specific binding of tZ in the microsome fraction but not in chloroplasts or mitochondria. In competitive binding assays with microsomes, tZ and iP were potent competitors of [3H]tZ while cZ demonstrated significantly lower affinity; adenine was almost ineffective. The binding specificities of microsomes from leaf and root cells for cytokinins were consistent with the expression pattern of the ZmHKs and our results on individual receptor properties. Aqueous two-phase partitioning and sucrose density-gradient centrifugation followed by immunological detection with monoclonal antibody showed that ZmHK1 was associated with the endoplasmic reticulum (ER). This was corroborated by observations of the subcellular localization of ZmHK1 fusions with green fluorescent protein in maize protoplasts. All these data strongly suggest that at least a part of cytokinin perception occurs in the ER

    Towards a genetic linkage map of the California condor, an endangered New World vulture species

    Get PDF
    Simple Summary The California condor is a critically endangered representative of New World vultures maintained under restoration and reintroduction programs. Within a California condor genome research project, we made a preliminary step toward a genetic linage map for this iconic bird species. The respective linkage data were generated using a panel of 121 condors. The condors were genotyped for 123 polymorphic microsatellite markers. The condor genotyping and mapping results are a useful addition to the previously obtained physical and cytogenetic maps and can be further utilized in condor genome sequence assembly. Abstract The development of a linkage map is an important component for promoting genetic and genomic studies in California condors, an endangered New World vulture species. Using a set of designed anonymous microsatellite markers, we genotyped a reference condor population involving 121 individuals. After marker validation and genotype filtering, the genetic linkage analysis was performed using 123 microsatellite loci. This resulted in the identification of 15 linkage groups/subgroups that formed a first-generation condor genetic map, while no markers linked to a lethal chondrodystrophy mutation were found. A panel of polymorphic markers that is instrumental in molecular parentage diagnostics and other genetic studies in the California condor was selected. Further condor conservation genomics research will be focused on updating the linkage map and integrating it with cytogenetic and BAC-based physical maps and ultimately with the genome sequence assembly. (This article belongs to the Special Issue Vulture Ecology and Conservation

    The impact of formative testing on study behaviour and study performance of (bio)medical students: a smartphone application intervention study.

    Get PDF
    BACKGROUND: Formative testing can increase knowledge retention but students often underuse available opportunities. Applying modern technology to make the formative tests more attractive for students could enhance the implementation of formative testing as a learning tool. This study aimed to determine whether formative testing using an internet-based application ("app") can positively affect study behaviour as well as study performance of (bio)medical students. METHODS: A formative testing app "Physiomics, to the next level" was introduced during a 4-week course to a large cohort (n = 461) of Dutch first year (bio)medical students of the Radboud University. The app invited students to complete 7 formative tests throughout the course. Each module was available for 3-4 days to stimulate the students to distribute their study activities throughout the 4-week course. RESULTS: 72% of the students used the app during the course. Study time significantly increased in intensive users (p < 0.001), while no changes were observed in moderate (p = 0.07) and non-users (p = 0.25). App-users obtained significantly higher grades during the final exam of the course (p < 0.05). Non-users more frequently failed their final exam (34%, OR 3.6, 95% CI: 2.0-6.4) compared to moderate users (19%) and intensive users (12%). Students with an average grade <6.5 during previous courses benefitted most from the app, as intensive (5.8 ± 0.9 / 36%) and moderate users (5.8 ± 0.9 / 33%) obtained higher grades and failed their exam less frequently compared to non-users (5.2 ± 1.1 / 61%). The app was also well appreciated by students; students scored the app with a grade of 7.3 ± 1.0 out of 10 and 59% of the students indicated that they would like the app to be implemented in future courses. CONCLUSIONS: A smartphone-based application of formative testing is an effective and attractive intervention to stimulate study behaviour and improve study performance in (bio) medical students

    Hydromechanical modelling of shaft sealing for CO2 storage

    Get PDF
    The geological sequestration of CO2 in abandoned coal mines is a promising option to mitigate climate changes while providing sustainable use of the underground cavities. In order to certify the efficiency of the storage, it is essential to understand the behaviour of the shaft sealing system. The paper presents a numerical analysis of CO2 transfer mechanisms through a mine shaft and its sealing system. Different mechanisms for CO2 leakage are considered, namely multiphase flow through the different materials and flow along the interfaces between the lining and the host rock. The study focuses on the abandoned coal mine of Anderlues, Belgium, which was used for seasonal storage of natural gas. A two-dimensional hydromechanical modelling of the storage site is performed and CO2 injection into the coal mine is simulated. Model predictions for a period of 500 years are presented and discussed with attention. The role and influence of the interface between the host rock and the concrete lining are examined. In addition the impact of some uncertain model parameters on the overall performance of the sealing system is analysed through a sensitivity analysis

    High connectivity of the Crocodile Shark between the Atlantic and Southwest Indian Oceans: highlights for conservation

    Get PDF
    Among the various shark species that are captured as bycatch in commercial fishing operations, the group of pelagic sharks is still one of the least studied and known. Within those, the crocodile shark, Pseudocarcharias kamoharai, a small-sized lamnid shark, is occasionally caught by longline vessels in certain regions of the tropical oceans worldwide. However, the population dynamics of this species, as well as the impact of fishing mortality on its stocks, are still unknown, with the crocodile shark currently one of the least studied of all pelagic sharks. Given this, the present study aimed to assess the population structure of P. kamoharai in several regions of the Atlantic and Indian Oceans using genetic molecular markers. The nucleotide composition of the mitochondrial DNA control region of 255 individuals was analyzed, and 31 haplotypes were found, with an estimated diversity Hd = 0.627, and a nucleotide diversity pi = 0.00167. An analysis of molecular variance (AMOVA) revealed a fixation index phi(ST) = -0.01118, representing an absence of population structure among the sampled regions of the Atlantic Ocean, and between the Atlantic and Indian Oceans. These results show a high degree of gene flow between the studied areas, with a single genetic stock and reduced population variability. In panmictic populations, conservation efforts can be concentrated in more restricted areas, being these representative of the total biodiversity of the species. When necessary, this strategy could be applied to the genetic maintenance of P. kamoharai.Foundation for Research Support of the Sao Paulo State - FAPESP [2011/23787-0, 2010/51903-2]; Portuguese Foundation for Science and Technology (FCT) [SFRH/BPD/93936/2013]; Foundation for Research Support of the Sao Paulo State - FAPESP [2011/23787-0, 2010/51903-2]; Portuguese Foundation for Science and Technology (FCT) [SFRH/BPD/93936/2013]info:eu-repo/semantics/publishedVersio

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio
    • 

    corecore