13 research outputs found

    Gardens as Science Learning Contexts Across Educational Stages: Learning Assessment Based on Students' Graphic Representations

    Get PDF
    The educational use of daily-life contexts is considered a valuable strategy to promote meaningful science learning, since it facilitates the establishment of connections between previous knowledge, personal interests, and new learning. The aim of this work is to provide evidence to support the presence of gardens at educational centers, by assessing key science topics whose learning is promoted at the pre-school, primary, secondary, and university stages. To this end, we analyzed the paired graphic representations of "a garden" that students drew both before and after their participation in a garden-based learning program. Firstly, we obtained the frequency of appearance of every represented element, and afterward characterized the level of change between paired graphic representations. Sample size was of 24-19-25-29 pairs per stage, respectively. Across all stages, an overall improvement in students' graphic expression was observed, which can be attributed to their experience in the space. At the pre-school stage, the garden favored the establishment of some simple cause-effect relationships which were consolidated at the primary stage, and provided a climate of motivation and affectivity that was evident in the final drawings, given the enormous quantity of details represented, the level of the finished product, and the careful combination and variety of colors. The presence of elements related to water notably increased in final graphic representations from pre-school, primary, and secondary education, thus evidencing that the use of gardens facilitates an approach to responsible water management. At the university stage, students initially demonstrated good knowledge of conventional agriculture, while the gardening experience -which was based on permaculture practices- helped evolve their ideas toward an alternative model of cultivation. The most prevalent science learning across all stages was related to plant knowledge, particularly to their anatomical traits and diversity. Finally, the role of educational gardens as models for students was evidenced, which suggests the importance of teachers and institutions carefully considering which model to offer. Overall, our results support the legitimacy of incorporating gardens to educational centers, particularly for promoting contact with live plants and plant knowledge, and potentially for promoting contact with garden fauna and activities oriented toward learning about it

    A Proposed Software Framework Aimed at Energy-Efficient Autonomous Driving of Electric Vehicles

    No full text
    This paper describes the development of an electric car prototype, aimed at autonomous, energy-efficient driving. Starting with an urban electric car, we describe the mechanical and mechatronics add-ons required to automate its driving. In addition, a variety of exteroceptive and proprioceptive sensors have been installed in order to obtain accurate measurements for datasets aimed at characterizing dynamic models of the vehicle, including the complex problem of wheel-soil slippage. Current and voltage are also monitored at key points of the electric power circuits in order to obtain an accurate model of power consumption, with the goal of allowing predictive path planners to trace routes as a trade-off between path length and overall power consumption. In order to handle the required variety of sensors involved in the vehicle, a MOOS-based software architecture has been developed based on distributed nodes that communicate over an onboard local area network.We provide experimental results describing the current stage of development of this platform, where a number of datasets have been already grabbed successfully and initial work on dynamics modeling is being carried on

    Highly dense linkage maps from 31 full-sibling families of turbot (Scophthalmus maximus) provide insights into recombination patterns and chromosome rearrangements throughout a newly refined genome assembly

    Get PDF
    Highly dense linkage maps enable positioning thousands of landmarks useful for anchoring the whole genome and for analysing genome properties. Turbot is the most important cultured flatfish worldwide and breeding programs in the fifth generation of selection are targeted to improve growth rate, obtain disease resistant broodstock and understand sex determination to control sex ratio. Using a Restriction-site Associated DNA approach, we genotyped 18,214 single nucleotide polymorphism in 1,268 turbot individuals from 31 full-sibling families. Individual linkage maps were combined to obtain a male, female and species consensus maps. The turbot consensus map contained 11,845 markers distributed across 22 linkage groups representing a total normalised length of 3,753.9 cM. The turbot genome was anchored to this map, and scaffolds representing 96% of the assembly were ordered and oriented to obtain the expected 22 megascaffolds according to its karyotype. Recombination rate was lower in males, especially around centromeres, and pairwise comparison of 44 individual maps suggested chromosome polymorphism at specific genomic regions. Genome comparison across flatfish provided new evidence on karyotype reorganisations occurring across the evolution of this fish group

    Plant Growth-Promoting Bacteria Elicited Induced Systemic Resistance and Tolerance in Plants

    No full text
    corecore