893 research outputs found

    Room to Grow: Agritourism Opportunities in Vermont Agriculture and Food System Plan: 2020 (Part One)

    Get PDF
    This analysis demonstrates that there is signficant unrealized potential to advance agritourism within the Vermont Agriculture and Food System Plan: 2020 (Part One)1 strategic plan and that applying an agritourism lens allows for the identification of a wide range of additional opportunities that can support Vermont farmers and agritourism goals. While agritourism is recognized in the report with a dedicated issue brief, this subsector of Vermont agriculture is otherwise largely overlooked in the other opportunities identified in Vermont’s strategic plan, particularly for the agritourism activities of hospitality, recreation, and entertainment. While direct-to-consumer sales, agricultural education, and farm diversification were referenced within the strategic plan’s opportunities, there is substantial room for increased attention to these activities as well. - 3/22 (14%) of the briefs explicitly mention agritourism activities within their respective opportunities sections (Apples, Dairy, and Direct Markets) - 18/22 (82%) of the briefs have the potential to incorporate agritourism, or could do so to a greater extent, according to our analysis - 6/157 (4%) of all opportunities across all briefs are explicitly related to agritourism, while 27/157 (17%) are implicitly related to agritourism (Table 1) - We identify 57 potential but overlooked agritourism opportunities across the report briefs and agritourism categories (Table 1) - Hospitality, recreation, and entertainment activities are absent from the opportunities (Table 1) - Farm diversification, recreation and agricultural education hold the greatest potential for future agritourism growth and investment (Table 1

    Effect of EMIC waves on relativistic and ultrarelativistic electron populations: Ground-based and Van Allen Probes observations

    Get PDF
    Abstract We study the effect of electromagnetic ion cyclotron (EMIC) waves on the loss and pitch angle scattering of relativistic and ultrarelativistic electrons during the recovery phase of a moderate geomagnetic storm on 11 October 2012. The EMIC wave activity was observed in situ on the Van Allen Probes and conjugately on the ground across the Canadian Array for Real-time Investigations of Magnetic Activity throughout an extended 18 h interval. However, neither enhanced precipitation of \u3e0.7 MeV electrons nor reductions in Van Allen Probe 90° pitch angle ultrarelativistic electron flux were observed. Computed radiation belt electron pitch angle diffusion rates demonstrate that rapid pitch angle diffusion is confined to low pitch angles and cannot reach 90°. For the first time, from both observational and modeling perspectives, we show evidence of EMIC waves triggering ultrarelativistic (~2-8 MeV) electron loss but which is confined to pitch angles below around 45° and not affecting the core distribution. Key Points EMIC wave activity is not associated with precipitation of MeV electrons EMIC waves do not deplete the ultra-relativistic belt down to 90° EMIC waves cause loss of low pitch angle electrons with energies ~2-8 MeV

    Carbon dynamics of the Weddell Gyre, Southern Ocean

    Get PDF
    The accumulation of carbon within the Weddell Gyre and its exchanges across the gyre boundaries are investigated with three recent full-depth oceanographic sections enclosing this climatically important region. The combination of carbonmeasurements with ocean circulation transport estimates from a box inverse analysis reveals that deepwater transports associated with Warm Deep Water (WDW) and Weddell Sea Deep Water dominate the gyre’s carbon budget, while a dual-cell vertical overturning circulation leads to both upwelling and the delivery of large quantities of carbon to the deep ocean. Historical sea surface pCO2 observations, interpolated using a neural network technique, confirm the net summertime sink of 0.044 to 0.058 ± 0.010 Pg C / yr derived from the inversion. However, a wintertime outgassing signal similar in size results in a statistically insignificant annual air-to-sea CO2 flux of 0.002± 0.007 Pg C / yr (mean 1998–2011) to 0.012 ± 0.024 Pg C/ yr (mean 2008–2010) to be diagnosed for the Weddell Gyre. A surface layer carbon balance, independently derived fromin situ biogeochemical measurements, reveals that freshwater inputs and biological drawdown decrease surface ocean inorganic carbon levels more than they are increased by WDW entrainment, resulting in an estimated annual carbon sink of 0.033 ± 0.021 Pg C / yr. Although relatively less efficient for carbon uptake than the global oceans, the summertime Weddell Gyre suppresses the winter outgassing signal, while its biological pump and deepwater formation act as key conduits for transporting natural and anthropogenic carbon to the deep ocean where they can reside for long time scales

    Freshwater distributions and water mass structure in the Amundsen Sea Polynya region, Antarctica

    Get PDF
    We present the first densely-sampled hydrographic survey of the Amundsen Sea Polynya (ASP) region, including a detailed characterization of its freshwater distributions. Multiple components contribute to the freshwater budget, including precipitation, sea ice melt, basal ice shelf melt, and iceberg melt, from local and non-local sources. We used stable oxygen isotope ratios in seawater (δ18O) to distinguish quantitatively the contributions from sea ice and meteoric-derived sources. Meteoric fractions were high throughout the winter mixed layer (WML), with maximum values of 2–3% (±0.5%). Because the ASP region is characterized by deep WMLs, column inventories of total meteoric water were also high, ranging from 10–13 m (±2 m) adjacent to the Dotson Ice Shelf (DIS) and in the deep trough to 7–9 m (±2 m) in shallower areas. These inventories are at least twice those reported for continental shelf waters near the western Antarctic Peninsula. Sea ice melt fractions were mostly negative, indicating net (annual) sea ice formation, consistent with this area being an active polynya. Independently determined fractions of subsurface glacial meltwater (as one component of the total meteoric inventory) had maximum values of 1–2% (±0.5%), with highest and shallowest maximum values at the DIS outflow (80–90 m) and in iceberg-stirred waters (150–200 m). In addition to these upwelling sites, contributions of subsurface glacial meltwater could be traced at depth along the ~ 27.6 isopycnal, from which it mixes into the WML through various processes. Our results suggest a quasi-continuous supply of melt-laden iron-enriched seawater to the euphotic zone of the ASP and help to explain why the ASP is Antarctica’s most biologically productive polynya per unit area

    Observations of a diapycnal shortcut to adiabatic upwelling of Antarctic Circumpolar Deep Water

    Get PDF
    In the Southern Ocean, small-scale turbulence causes diapycnal mixing which influences important water mass transformations, in turn impacting large-scale ocean transports such as the Meridional Overturning Circulation (MOC), a key controller of Earth'sclimate. We present direct observations of mixing over the Antarctic continental slope between water masses that are part of the Southern Ocean MOC. A 12-hour time-series of microstructure turbulence measurements, hydrography and velocity observations off Elephant Island, north of the Antarctic Peninsula, reveals two concurrent bursts of elevated dissipation of O(10–6Wkg–1, resulting in heat fluxes ~10 times higher than basin-integrated Drake Passage estimates. This occurs across the boundary between adjacent adiabatic upwelling and downwelling overturning cells. Ray tracing and topography show mixing between 300-400 m consistent with the breaking of locally-generated internal tidal waves. Since similar conditions extend to much of the Antarctic continental slope where these water masses outcrop, their transformation may contribute significantly to upwelling

    Opal (Zn/Si) ratios as a nearshore geochemical proxy in coastal Antarctica

    Get PDF
    Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 23 (2008): PA2218, doi:10.1029/2007PA001576.During the last 50 years, the Antarctic Peninsula has experienced rapid warming with associated retreat of 87% of marine and tidewater glacier fronts. Accelerated glacial retreat and iceberg calving may have a significant impact on the freshwater and nutrient supply to the phytoplankton communities of the highly productive coastal regions. However, commonly used biogenic carbonate proxies for nutrient and salinity conditions are not preserved in sediments from coastal Antarctica. Here we describe a method for the measurement of zinc to silicon ratios in diatom opal, (Zn/Si)opal, which is a potential archive in Antarctic marine sediments. A core top calibration from the West Antarctic Peninsula shows (Zn/Si)opal is a proxy for mixed layer salinity. We present down-core (Zn/Si)opal paleosalinity records from two rapidly accumulating sites taken from nearshore environments off the West Antarctic Peninsula which show an increase in meltwater input in recent decades. Our records show that the recent melting in this region is unprecedented for over 120 years.The work was funded as part of NERC Antarctic Funding Initiative AFI4– 02. K.R.H. is funded by NERC grant NER/S/A/2004/12390

    Delivering sustained, coordinated and integrated observations of the Southern Ocean for global impact

    Get PDF
    The Southern Ocean is disproportionately important in its effect on the Earth system, impacting climatic, biogeochemical, and ecological systems, which makes recent observed changes to this system cause for global concern. The enhanced understanding and improvements in predictive skill needed for understanding and projecting future states of the Southern Ocean require sustained observations. Over the last decade, the Southern Ocean Observing System (SOOS) has established networks for enhancing regional coordination and research community groups to advance development of observing system capabilities. These networks support delivery of the SOOS 20-year vision, which is to develop a circumpolar system that ensures time series of key variables, and delivers the greatest impact from data to all key end-users. Although the Southern Ocean remains one of the least-observed ocean regions, enhanced international coordination and advances in autonomous platforms have resulted in progress toward sustained observations of this region. Since 2009, the Southern Ocean community has deployed over 5700 observational platforms south of 40°S. Large-scale, multi-year or sustained, multidisciplinary efforts have been supported and are now delivering observations of essential variables at space and time scales that enable assessment of changes being observed in Southern Ocean systems. The improved observational coverage, however, is predominantly for the open ocean, encompasses the summer, consists of primarily physical oceanographic variables, and covers surface to 2000 m. Significant gaps remain in observations of the ice-impacted ocean, the sea ice, depths >2000 m, the air-ocean-ice interface, biogeochemical and biological variables, and for seasons other than summer. Addressing these data gaps in a sustained way requires parallel advances in coordination networks, cyberinfrastructure and data management tools, observational platform and sensor technology, two-way platform interrogation and data-transmission technologies, modeling frameworks, intercalibration experiments, and development of internationally agreed sampling standards and requirements of key variables. This paper presents a community statement on the major scientific and observational progress of the last decade, and importantly, an assessment of key priorities for the coming decade, toward achieving the SOOS vision and delivering essential data to all end-users.Fil: Newman, Louise. University of Tasmania; AustraliaFil: Heil, Petra. Australian Antarctic Division; Australia. Antarctic Climate And Ecosystems Cooperative Research Centre; AustraliaFil: Trebilco, Rowan. Australian Antarctic Division; Australia. Antarctic Climate And Ecosystems Cooperative Research Centre; AustraliaFil: Katsumata, Katsuro. Japan Agency For Marine earth Science And Technology; JapónFil: Constable, Andrew J.. Antarctic Climate And Ecosystems Cooperative Research Centre; Australia. Australian Antarctic Division; AustraliaFil: Wijk, Esmee van. Commonwealth Scientific And Industrial Research Organization; Australia. Antarctic Climate And Ecosystems Cooperative Research Centre; AustraliaFil: Assmann, Karen. University Goteborg; SueciaFil: Beja, Joana. British Oceanographic Data Centre; AustraliaFil: Bricher, Phillippa. University of Tasmania; AustraliaFil: Coleman, Richard. University of Tasmania; AustraliaFil: Costa, Daniel. University of California; Estados UnidosFil: Diggs, Steve. University of California; Estados UnidosFil: Farneti, Riccardo. The Abdus Salam; Italia. The Abdus Salam. International Centre for Theoretical Physics; ItaliaFil: Fawcett, Sarah. University of Cape Town; SudáfricaFil: Gille, Sarah. University of California; Estados UnidosFil: Hendry, Katharine R.. University of Bristol; Reino UnidoFil: Henley, Sian F.. University of Edinburgh; Reino UnidoFil: Hofmann, Eileen. Old Dominion University; Estados UnidosFil: Maksym, Ted. University of California; Estados UnidosFil: Mazloff, Matthew. University of California; Estados UnidosFil: Meijers, Andrew J.. British Antartic Survey; Reino UnidoFil: Meredith, Michael. British Antartic Survey; Reino UnidoFil: Moreau, Sebastien. Norwegian Polar Institute; NoruegaFil: Ozsoy, Burcu. Istanbul Teknik Üniversitesi; TurquíaFil: Robertson, Robin. Xiamen University; ChinaFil: Schloss, Irene Ruth. Universidad Nacional de Tierra del Fuego; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; ArgentinaFil: Schofield, Oscar. State University of New Jersey; Estados UnidosFil: Shi, Jiuxin. Ocean University Of China; ChinaFil: Sikes, Elisabeth L.. State University of New Jersey; Estados UnidosFil: Smith, Inga J.. University of Otago; Nueva Zeland

    Sight and sound out of synch: Fragmentation and renormalisation of audiovisual integration and subjective timing

    Get PDF
    The sight and sound of a person speaking or a ball bouncing may seem simultaneous, but their corresponding neural signals are spread out over time as they arrive at different multisensory brain sites. How subjective timing relates to such neural timing remains a fundamental neuroscientific and philosophical puzzle. A dominant assumption is that temporal coherence is achieved by sensory resynchronisation or recalibration across asynchronous brain events. This assumption is easily confirmed by estimating subjective audiovisual timing for groups of subjects, which is on average similar across different measures and stimuli, and approximately veridical. But few studies have examined normal and pathological individual differences in such measures. Case PH, with lesions in pons and basal ganglia, hears people speak before seeing their lips move. Temporal order judgements (TOJ) confirmed this: voices had to lag lip-movements (by ~200ms) to seem synchronous to PH. Curiously, voices had to lead lips (also by ~200ms) to maximise the McGurk illusion (a measure of audiovisual speech integration). Thus PH’s timing was still veridical on average across measures. Similar kinds of discrepancies were also found in age-matched control participants. Most surprisingly, normal individual differences in TOJ and McGurk timing correlated negatively: subjects needing an auditory lag for subjective simultaneity needed an auditory lead for maximal McGurk, and vice versa. This generalised to the Stream-Bounce illusion. Such antagonism seems opposed to good sensory resynchronisation, yet average timing across tasks was still near-veridical. Our findings reveal surprising disunity of subjective timing within and between subjects. To account for this we propose that the neural timing within different mechanisms is perceived relative to the average timing across mechanisms. Such renormalisation fully explains the curious antagonistic relationship between disparate timing estimates in PH and healthy participants, and how they can still perceive the timing of external events correctly, on average
    • …
    corecore