4,998 research outputs found

    The Beginning of a Great British Adventure

    Get PDF
    Postcard from Rilee Macaluso, during the Linfield College Semester Abroad Program at the University of Nottingham in Englan

    Pulling Out All the Tops with Computer Vision and Deep Learning

    Full text link
    We apply computer vision with deep learning -- in the form of a convolutional neural network (CNN) -- to build a highly effective boosted top tagger. Previous work (the "DeepTop" tagger of Kasieczka et al) has shown that a CNN-based top tagger can achieve comparable performance to state-of-the-art conventional top taggers based on high-level inputs. Here, we introduce a number of improvements to the DeepTop tagger, including architecture, training, image preprocessing, sample size and color pixels. Our final CNN top tagger outperforms BDTs based on high-level inputs by a factor of āˆ¼2\sim 2--3 or more in background rejection, over a wide range of tagging efficiencies and fiducial jet selections. As reference points, we achieve a QCD background rejection factor of 500 (60) at 50\% top tagging efficiency for fully-merged (non-merged) top jets with pTp_T in the 800--900 GeV (350--450 GeV) range. Our CNN can also be straightforwardly extended to the classification of other types of jets, and the lessons learned here may be useful to others designing their own deep NNs for LHC applications.Comment: 33 pages, 11 figure

    Deep inelastic scattering structure functions of holographic spin-1 hadrons with Nfā‰„1N_f \geq 1

    Get PDF
    Two-point current correlation functions of the large NN limit of supersymmetric and non-supersymmetric Yang-Mills theories at strong coupling are investigated in terms of their string theory dual models with quenched flavors. We consider non-Abelian global symmetry currents, which allow one to investigate vector mesons with Nf>1N_f > 1. From the correlation functions we construct the deep inelastic scattering hadronic tensor of spin-one mesons, obtaining the corresponding eight structure functions for polarized vector mesons. We obtain several relations among the structure functions. Relations among some of their moments are also derived. Aspects of the sub-leading contributions in the 1/N1/N and Nf/NN_f/N expansions are discussed. At leading order we find a universal behavior of the hadronic structure functions.Comment: 48 pages, 8 figure

    Census Tract License Areas: Disincentive for Sharing the 3.5GHz band?

    Full text link
    Flexible licensing model is a necessary enabler of the technical and procedural complexities of Spectrum Access System (SAS)-based sharing framework. The purpose of this study is to explore the effectiveness of 3.5GHz Licensing Framework - based on census tracts as area units, areas whose main characteristic is population. As such, the boundary of census tract does not follow the edge of wireless network coverage. We demonstrate why census tracts are not suitable for small cell networks licensing, by (1) gathering and analysing the official census data, (2) exploring the boundaries of census tracts which are in the shape of nonconvex polygons and (3) giving a measure of effectiveness of the licensing scheme through metrics of area loss and the number of people per census tract with access to spectrum. Results show that census tracts severely impact the effectiveness of the licensing framework since almost entire strategically important cities in the U.S. will not avail from spectrum use in 3.5GHz band. Our paper does not seek to challenge the core notion of geographic licensing concept, but seeks a corrective that addresses the way the license is issued for a certain area of operation. The effects that inappropriate size of the license has on spectrum assignments lead to spectrum being simply wasted in geography, time and frequency or not being assigned in a fair manner. The corrective is necessary since the main goal of promoting innovative sharing in 3.5 GHz band is to put spectrum to more efficient use.Comment: 7 pages, 5 figures, conferenc

    Revealing Compressed Stops Using High-Momentum Recoils

    Full text link
    Searches for supersymmetric top quarks at the LHC have been making great progress in pushing sensitivity out to higher mass, but are famously plagued by gaps in coverage around lower-mass regions where the decay phase space is closing off. Within the common stop-NLSP / neutralino-LSP simplified model, the line in the mass plane where there is just enough phase space to produce an on-shell top quark remains almost completely unconstrained. Here, we show that is possible to define searches capable of probing a large patch of this difficult region, with S/B ~ 1 and significances often well beyond 5 sigma. The basic strategy is to leverage the large energy gain of LHC Run 2, leading to a sizable population of stop pair events recoiling against a hard jet. The recoil not only re-establishes a MET signature, but also leads to a distinctive anti-correlation between the MET and the recoil jet transverse vectors when the stops decay all-hadronically. Accounting for jet combinatorics, backgrounds, and imperfections in MET measurements, we estimate that Run 2 will already start to close the gap in exclusion sensitivity with the first few 10s of inverse-fb. By 300/fb, exclusion sensitivity may extend from stop masses of 550 GeV on the high side down to below 200 GeV on the low side, approaching the "stealth" point at m(stop) = m(top) and potentially overlapping with limits from top pair cross section and spin correlation measurements.Comment: 17 pages, 6 figure

    Synergistic interaction between the Arp2/3 complex and cofilin drives stimulated lamellipod extension

    Get PDF
    Both the Arp2/3 complex and cofilin are believed to be important for the generation of protrusive force at the leading edge; however, their relative contributions have not been explored in vivo. Our results with living cells show that cofilin enters the leading edge immediately before the start of lamellipod extension, slightly earlier than Arp2/3, which begins to be recruited slightly later as the lamellipod is extended. Blocking either the Arp2/3 complex or cofilin function in cells results in failure to extend broad lamellipods and inhibits free barbed ends, suggesting that neither factor on its own can support actin polymerization-mediated protrusion in response to growth factor stimulation. High-resolution analysis of the actin network at the leading edge supports the idea that both the severing activity of cofilin and the specific branching activity of the Arp2/3 complex are essential for lamellipod protrusion. These results are the first to document the relative contributions of cofilin and Arp2/3 complex in vivo and indicate that cofilin begins to initiate the generation of free barbed ends that act in synergy with the Arp2/3 complex to create a large burst in nucleation activity
    • ā€¦
    corecore