1,083 research outputs found

    Buying friends? The importance of economic flows in assembling the Iraq war coalition

    Get PDF
    Economic ties between countries are likely to influence the alignment of their international policies. This paper investigates whether countries historical economic ties with the United States and their expectation of changes in future economic flows had a role in their decision to join the US-led coalition in Iraq from 2003 onwards. We use data on 115 countries over the period 2003-2009 to estimate panel random effects probit models of war coalition participation. We measure the intensity of economic ties with three variables: bilateral trade flows between the partner country and the US as well as FDI and aid flows from the US to the partner country. Our results suggest that both good trade relations prior to the conflict and the prospects of their further improvements increase the willingness of countries to join the coali- tion. In spite of the anecdotal evidence, we find no empirical evidence that the dependence on American FDI or aid affected countries decision on Iraq war participation

    Fragmentation and integration: new evidence on the organisational structure of UK firms

    Get PDF
    This thesis will discuss how fragmented UK firms are and how they have changed between 1997 - 2008. We examine possible explanations for fragmentation and try to capture the effects of fragmentation on employment and labour productivity. We consider an organisational and a spatial dimension of fragmentation for the manufacturing and the tradable service sector. The data used comes from the Business Structure Database - a firm and plant level database which captures 99 percent of UK economic activity

    Endosymbionts moderate constrained sex allocation in a haplodiploid thrips species in a temperature-sensitive way

    Get PDF
    Maternally inherited bacterial endosymbionts that affect host fitness are common in nature. Some endosymbionts colonise host populations by reproductive manipulations (such as cytoplasmic incompatibility; CI) that increase the reproductive fitness of infected over uninfected females. Theory predicts that CI-inducing endosymbionts in haplodiploid hosts may also influence sex allocation, including in compatible crosses, however, empirical evidence for this is scarce. We examined the role of two common CI-inducing endosymbionts, Cardinium and Wolbachia, in the sex allocation of Pezothrips kellyanus, a haplodiploid thrips species with a split sex ratio. In this species, irrespective of infection status, some mated females are constrained to produce extremely male-biased broods, whereas other females produce extremely female-biased broods. We analysed brood sex ratio of females mated with males of the same infection status at two temperatures. We found that at 20 °C the frequency of constrained sex allocation in coinfected pairs was reduced by 27% when compared to uninfected pairs. However, at 25 °C the constrained sex allocation frequency increased and became similar between coinfected and uninfected pairs, resulting in more male-biased population sex ratios at the higher temperature. This temperature-dependent pattern occurred without changes in endosymbiont densities and compatibility. Our findings indicate that endosymbionts affect sex ratios of haplodiploid hosts beyond the commonly recognised reproductive manipulations by causing female-biased sex allocation in a temperature-dependent fashion. This may contribute to a higher transmission efficiency of CI-inducing endosymbionts and is consistent with previous models that predict that CI by itself is less efficient in driving endosymbiont invasions in haplodiploid hosts

    Polyploidy versus endosymbionts in obligately thelytokous thrips

    Get PDF
    BACKGROUND: Thelytoky, the parthenogenetic development of females, has independently evolved in several insect orders yet the study of its mechanisms has so far mostly focussed on haplodiploid Hymenoptera, while alternative mechanisms of thelytoky such as polyploidy are far less understood. In haplodiploid insects, thelytoky can be encoded in their genomes, or induced by maternally inherited bacteria such as Wolbachia or Cardinium. Microbially facilitated thelytoky usually results in complete homozygosity due to gamete duplication and can be reverted into arrhenotoky, the parthenogenetic development of males, through treatment with antibiotics. In contrast, genetically encoded thelytoky cannot be removed and may result in conservation of heterozygosity due to gamete fusion. We have probed the obligate thelytoky of the greenhouse thrips, Heliothrips haemorrhoidalis (Bouché), a significant cosmopolitan pest and a model species of thelytoky in the haplodiploid insect order Thysanoptera. Earlier studies suggested terminal fusion as a mechanism for thelytoky in this species, while another study reported presence of Wolbachia; later it was speculated that Wolbachia plays a role in this thrips’ thelytokous reproduction. RESULTS: By using PCR and sequence analysis, we demonstrated that global population samples of H. haemorrhoidalis were not infected with Wolbachia, Cardinium or any other known bacterial reproductive manipulators. Antibiotic treatment of this thrips did also not result in male production. Some individuals carried two different alleles in two nuclear loci, histone 3 and elongation factor 1 alpha, suggesting heterozygosity. However, the majority of individuals had three different alleles suggesting that they were polyploid. Genetic diversity across both nuclear loci was low in all populations, and absent from mitochondrial cytochrome oxidase I, indicating that this species had experienced genetic bottlenecks, perhaps due to its invasion biology or a switch to thelytoky. CONCLUSIONS: Geographically broad sampling and experimental manipulation revealed low genetic diversity, absence of Wolbachia but presence of three different alleles of nuclear loci in most analysed individuals of obligately thelytokous H. haemorrhoidalis. This suggests that polyploidy may be involved in the thelytokous reproduction of this thrips species, and polyploidy may be a contributing factor in the reproduction of Thysanoptera and other haplodiploid insect orders. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12862-015-0304-6) contains supplementary material, which is available to authorized users

    A functional analysis of the pyrimidine catabolic pathway in Arabidopsis

    Get PDF
    Reductive catabolism of pyrimidine nucleotides occurs via a three-step pathway in which uracil is degraded to β-alanine, CO2 and NH3 through sequential activities of dihydropyrimidine dehydrogenase (EC 1.3.1.2, PYD1), dihydropyrimidinase (EC 3.5.2.2, PYD2) and β-ureidopropionase (EC 3.5.1.6, PYD3).A proposed function of this pathway, in addition to the maintenance of pyrimidine homeostasis, is the recycling of pyrimidine nitrogen to general nitrogen metabolism. PYD expression and catabolism of [2-14C]-uracil are markedly elevated in response to nitrogen limitation in plants, which can utilize uracil as a nitrogen source.PYD1, PYD2 and PYD3 knockout mutants were used for functional analysis of this pathway in Arabidopsis. pyd mutants exhibited no obvious phenotype under optimal growing conditions. pyd2 and pyd3 mutants were unable to catabolize [2-14C]-uracil or to grow on uracil as the sole nitrogen source. By contrast, catabolism of uracil was reduced by only 40% in pyd1 mutants, and pyd1 seedlings grew nearly as well as wild-type seedlings with a uracil nitrogen source. These results confirm PYD1 function and suggest the possible existence of another, as yet unknown, activity for uracil degradation to dihydrouracil in this plant.The localization of PYD-green fluorescent protein fusions in the plastid (PYD1), secretory system (PYD2) and cytosol (PYD3) suggests potentially complex metabolic regulation

    The Native Wolbachia Endosymbionts of Drosophila melanogaster and Culex quinquefasciatus Increase Host Resistance to West Nile Virus Infection

    Get PDF
    The bacterial endosymbiont Wolbachia pipientis has been shown to increase host resistance to viral infection in native Drosophila hosts and in the normally Wolbachia-free heterologous host Aedes aegypti when infected by Wolbachia from Drosophila melanogaster or Aedes albopictus. Wolbachia infection has not yet been demonstrated to increase viral resistance in a native Wolbachia-mosquito host system.In this study, we investigated Wolbachia-induced resistance to West Nile virus (WNV; Flaviviridae) by measuring infection susceptibility in Wolbachia-infected and Wolbachia-free D. melanogaster and Culex quinquefasciatus, a natural mosquito vector of WNV. Wolbachia infection of D. melanogaster induces strong resistance to WNV infection. Wolbachia-infected flies had a 500-fold higher ID50 for WNV and produced 100,000-fold lower virus titers compared to flies lacking Wolbachia. The resistance phenotype was transmitted as a maternal, cytoplasmic factor and was fully reverted in flies cured of Wolbachia. Wolbachia infection had much less effect on the susceptibility of D. melanogaster to Chikungunya (Togaviridae) and La Crosse (Bunyaviridae) viruses. Wolbachia also induces resistance to WNV infection in Cx. quinquefasciatus. While Wolbachia had no effect on the overall rate of peroral infection by WNV, Wolbachia-infected mosquitoes produced lower virus titers and had 2 to 3-fold lower rates of virus transmission compared to mosquitoes lacking Wolbachia.This is the first demonstration that Wolbachia can increase resistance to arbovirus infection resulting in decreased virus transmission in a native Wolbachia-mosquito system. The results suggest that Wolbachia reduces vector competence in Cx. quinquefasciatus, and potentially in other Wolbachia-infected mosquito vectors

    Phylogenomics of the Reproductive Parasite Wolbachia pipientis wMel: A Streamlined Genome Overrun by Mobile Genetic Elements

    Get PDF
    The complete sequence of the 1,267,782 bp genome of Wolbachia pipientis wMel, an obligate intracellular bacteria of Drosophila melanogaster, has been determined. Wolbachia, which are found in a variety of invertebrate species, are of great interest due to their diverse interactions with different hosts, which range from many forms of reproductive parasitism to mutualistic symbioses. Analysis of the wMel genome, in particular phylogenomic comparisons with other intracellular bacteria, has revealed many insights into the biology and evolution of wMel and Wolbachia in general. For example, the wMel genome is unique among sequenced obligate intracellular species in both being highly streamlined and containing very high levels of repetitive DNA and mobile DNA elements. This observation, coupled with multiple evolutionary reconstructions, suggests that natural selection is somewhat inefficient in wMel, most likely owing to the occurrence of repeated population bottlenecks. Genome analysis predicts many metabolic differences with the closely related Rickettsia species, including the presence of intact glycolysis and purine synthesis, which may compensate for an inability to obtain ATP directly from its host, as Rickettsia can. Other discoveries include the apparent inability of wMel to synthesize lipopolysaccharide and the presence of the most genes encoding proteins with ankyrin repeat domains of any prokaryotic genome yet sequenced. Despite the ability of wMel to infect the germline of its host, we find no evidence for either recent lateral gene transfer between wMel and D. melanogaster or older transfers between Wolbachia and any host. Evolutionary analysis further supports the hypothesis that mitochondria share a common ancestor with the α-Proteobacteria, but shows little support for the grouping of mitochondria with species in the order Rickettsiales. With the availability of the complete genomes of both species and excellent genetic tools for the host, the wMel–D. melanogaster symbiosis is now an ideal system for studying the biology and evolution of Wolbachia infections

    Understanding metric-related pitfalls in image analysis validation

    Get PDF
    Validation metrics are key for the reliable tracking of scientific progress and for bridging the current chasm between artificial intelligence (AI) research and its translation into practice. However, increasing evidence shows that particularly in image analysis, metrics are often chosen inadequately in relation to the underlying research problem. This could be attributed to a lack of accessibility of metric-related knowledge: While taking into account the individual strengths, weaknesses, and limitations of validation metrics is a critical prerequisite to making educated choices, the relevant knowledge is currently scattered and poorly accessible to individual researchers. Based on a multi-stage Delphi process conducted by a multidisciplinary expert consortium as well as extensive community feedback, the present work provides the first reliable and comprehensive common point of access to information on pitfalls related to validation metrics in image analysis. Focusing on biomedical image analysis but with the potential of transfer to other fields, the addressed pitfalls generalize across application domains and are categorized according to a newly created, domain-agnostic taxonomy. To facilitate comprehension, illustrations and specific examples accompany each pitfall. As a structured body of information accessible to researchers of all levels of expertise, this work enhances global comprehension of a key topic in image analysis validation.Comment: Shared first authors: Annika Reinke, Minu D. Tizabi; shared senior authors: Paul F. J\"ager, Lena Maier-Hei

    Autonomous magnetic labelling of functional mesenchymal stem cells for improved traceability and spatial control in cell therapy applications

    Get PDF
    Mesenchymal stem cells (MSCs) represent a valuable resource for regenerative medicine treatments for orthopaedic repair and beyond. Following developments in isolation, expansion and differentiation protocols, efforts to promote clinical translation of emerging cellular strategies now seek to improve cell delivery and targeting. This study shows efficient live MSC labelling using silica‐coated magnetic particles (MPs), which enables 3D tracking and guidance of stem cells. A procedure developed for the efficient and unassisted particle uptake was shown to support MSC viability and integrity, while surface marker expression and MSC differentiation capability were also maintained. In vitro, MSCs showed a progressive decrease in labelling over increasing culture time, which appeared to be linked to the dilution effect of cell division, rather than to particle release, and did not lead to detectable secondary particle uptake. Labelled MSC populations demonstrated magnetic responsiveness in vitro through directed migration in culture and, when seeded onto a scaffold, supporting MP‐based approaches to cell targeting. The potential of these silica‐coated MPs for MRI cell tracking of MSC populations was validated in 2D and in a cartilage repair model following cell delivery. These results highlight silica‐coated magnetic particles as a simple, safe and effective resource to enhance MSC targeting for therapeutic applications and improve patient outcomes
    corecore