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Abstract 

Mesenchymal stem cells (MSCs) represent a valuable resource for regenerative medicine treatments for 

orthopaedic repair and beyond. Following developments in isolation, expansion and differentiation protocols, 

efforts to promote clinical translation of emerging cellular strategies now seek to improve cell delivery and 

targeting. This study shows efficient live MSC labelling using silica-coated magnetic particles (MPs), which 

enables 3D tracking and guidance of stem cells. A procedure developed for the efficient and unassisted particle 

uptake was shown to support MSC viability and integrity, while surface marker expression and MSC differentiation 

capability were also maintained. In vitro, MSCs showed a progressive decrease in labelling over increasing 

culture time, which appeared to be linked to the dilution effect of cell division, rather than to particle release, 

and did not lead to detectable secondary particle uptake. Labelled MSC populations demonstrated magnetic 

responsiveness in vitro through directed migration in culture and, when seeded onto a scaffold, supporting MP-

based approaches to cell targeting. The potential of these silica-coated MPs for MRI cell tracking of MSC 

populations was validated in 2D and in a cartilage repair model following cell delivery. These results highlight 

silicacoated magnetic particles as a simple, safe and effective resource to enhance MSC targeting for 

therapeutic applications and improve patient outcomes. © 2016 The Authors Journal of Tissue Engineering and 

Regenerative Medicine Published by John Wiley & Sons Ltd. 
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1. Introduction 

Over the past decades, a range of iron oxide-based magnetic particles (MPs) have been developed for clinical applications in the 

field of magnetic resonance imaging (MRI) (Gilchrist et al., 1957). Superparamagnetic iron oxide nanoparticles (SPIOs) are a 

specific class of magnetic particles known for their application as T2-weighted negative MRI contrast agents, designed to 

overcome the inherent low sensitivity associated with MRI (Bulte and Kraitchman, 2004; Pooley, 2005). Magnetic particles 

composed of either a magnetite (Fe3O4) or maghemite (γ-Fe2O3) core (Berman et al., 2011; Gupta and Gupta, 2005) surrounded by 

a biocompatible polymer, such as silica and dextran, have been used for the labelling and identification of cell populations 

(Kunzmann et al., 2011). FDA-approved iron-based particles, such as Endorem (also referred to as Feridex) and Resovist, have 

been used as MRI contrast agents in recent years (Berman et al., 2011; Jasmin Torres et al., 2011); however, since these 

products are no longer clinically used, there is a need for validated products offering low toxicity, biocompatibility and chemical 

stability under physiological conditions (Hofmann-Amtenbrink et al., 2010; Mahmoudi et al., 2011). 

While the literature on MPs has largely focused on developing particle design, synthesis and characterization (McBride et al., 2013), 

recent studies have also investigated MPs for cell-based applications beyond MRI imaging, as their applied magnetic fields have been 

used to develop new approaches to enhance transfection (Pickard et al., 2011), induce hyperthermia (Kobayashi, 2011), force in vitro 

aggregation (Fayol et al., 2013), enable regenerative therapies (El Haj et al., 2012) and activate cell receptor signalling on the cell 

membrane (Henstock et al., 2014). Their small size and magnetic properties, coupled with versatile surface coatings (Gupta and 

Gupta, 2005), open a range of new approaches which could see MPs enhance existing and future regenerative cell therapies. Such 

cell-based approaches require the targeted delivery of functional populations, such as mesenchymal stem cells (MSCs), which have 

become a resource of prime importance for their skeletal regeneration ability (Caplan, 2007; Quarto et al., 2001) but also for their 

properties of immune modulation (Le Blanc et al., 2003), anti-inflammation (Uccelli, 2008) or trophic secretion (Caplan and Dennis, 
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2006). MSC-based therapies for tissue repair require auxiliary approaches which enable in vivo tracking, delivery and targeting, in order 

to monitor and improve the retention of functional cells at the intervention site (Wimpenny et al., 2012). 

In this study, the suitability of MPs presenting a silica surface with negatively charged silanol groups was investigated for use 

in human mesenchymal stem cells (MSCs) as a labelling, imaging and manipulation agent. The labelling dynamics and cellular 

response were analysed with a particular emphasis on markers of cell health, identity and functional potential of the target 

population, as well as their suitability for cell-tracking purposes in an articular model. Observations presented here can help refine 

novel applications of MP labelling and evaluate the resulting health considerations of future MP-assisted stem cell therapies. 

 

2. Materials and methods 

All reagents were purchased from Life Technologies, unless otherwise stated. 

 
2.1. Human mesenchymal stem cell cultures 

 
A human bone marrow-derived mesenchymal stem cell line (hMSCs) (France et al., 2014; Okamoto et al., 2002) was cultured 

and expanded under standard cell culture conditions (37.5°C, 5% CO2) in standard culture medium consisting of Dulbecco’s 

modified Eagle’s medium (DMEM) supplemented with 10% v/v fetal bovine serum (FBS), 1% v/v non-essential amino acids, 1 

mM L-glutamine, 1 mM pyruvate and 1% penicillin–streptomycin. The cells were passaged using trypsin–EDTA. For some 

experiments, hMSCs stably transfected to constitutively express green fluorescent protein (GFP; gMSCs) following an 

established protocol (Peister et al., 2004) were used under standard cell culture conditions in standard culture medium to 

enable fluorescence microscopy. Primary human mesenchymal stem cells (pMSCs) were isolated from human bone marrow 

aspirate (Lonza, UK). In brief, the bone marrow aspirate was seeded in fibronectin-coated flasks at a mononuclear cell density 

of 1.5 × 103 cell/cm2 and cultured for 1 week (37°C, 5% CO2) in pMSC isolation medium containing low-glucose DMEM (Lonza 

Biowhittaker, UK) supplemented with 10% FBS (Lonza Biowhittaker), 1% L-glutamine (Sigma-Aldrich, UK) and 1% penicillin–

streptomycin (Sigma-Aldrich). A 50% medium change with fresh pMSC isolation medium was performed after 1 week, followed 

by a switch 1 week later to hMSC proliferation medium (high-glucose DMEM supplemented with 10% FBS, 1% L-glutamine and 

1% penicillin–streptomycin). pMSCs were identified as those which had adhered to the tissue-culture vessel after 14 days in 

culture. 

2.2. Cell labelling with magnetic particles (MPs) 
 

hMSCs and pMSCs were labelled with 1000 nm particles composed of a maghemite core with a solid unmodified silica 

surface, as previously described (Markides et al., 2013), using standard (SiMAG) or fluorescently tagged (ScreenMAG-Silanol) 

particles, as specified (Chemicell, Germany). In brief, adherent cell populations were incubated with MPs (1–10 μg/ml) in 

medium for 24 h, using serum-containing or serum-free medium (MRI experiments) as specified (for cell-labelling 

experiments, standard medium containing 10% FBS was used, unless otherwise stated). The next day, the cells were 

thoroughly washed with phosphate-buffered saline (PBS) in order to remove excess particles that may have settled on the 

surface of the cell layer or flask. 

To measure particle uptake by flow cytometry, cells were seeded at 7.5 × 103 cell/ml and ScreenMAG-labelled for 

24 h. The cells were then harvested, centrifuged at 200 × g for 5 min and resuspended in 200 μl PBS prior to analysis on a Guava 

EasyCyte 8HT Flow Cytometer Channel FL2 with InCyte 2.5 Software (Millipore, USA), comparing labelled and unlabelled 

populations to evaluate percentage uptake based on fluorescent intensity. Analysis was performed using WEASEL (WEHI, 

Australia), using unlabelled cells as controls to evaluate increased fluorescence. The standard particle concentration used in 

the study was 10 μg/ml, unless otherwise stated, which was shown to correspond to an intracellular iron load of 20 pg/cell 

(Markides et al., 2013). 

 
 

2.3. Fluorescence imaging of particle uptake 
 

Particle uptake was further evaluated visually using an array of fluorescent cell dyes and fluorescent microscopy to evaluate 

internalization in relation to cell structure. hMSCs cultured on glass coverslips were labelled with particles and fixed at room 

temperature for 15 min in 4% v/v paraformaldehyde (PFA; VWR, UK). After permeabilization with 0.1% Triton X-100 for 5 min 

following two tPBS washes, cells were stained for actin filaments using a 1:41 working solution of 6.6 μM AlexaFluor® 488 

phalloidin in methanol. The slides were incubated in a dark covered container at room temperature for 20 min and then washed 

twice with PBS, prior to mounting using Vectashield mounting medium (Vector Laboratories, USA). Imaging was performed using a 



 

 

Leica TCS SP2 confocal laser-scanning microscope (CLSM; Leica Microsystems, Germany). 

 

 
2.4. Prussian blue staining 

 
hMSC cells were grown in monolayer and labelled with 10 μg/ml MPs for 24 h prior to fixing with 4% PFA for 15 min. 

Immediately prior to addition to the cells, 20% aqueous solution of hydrochloric acid and 10% aqueous solution of potassium 

ferrocyanide were mixed in equal parts. This staining solution was applied to the fixed monolayer for 5 min and washed three 

times with PBS. Images were acquired using an Eclipse TS100 inverted microscope (Nikon, Japan). 

 

 
2.5. Transmission electron microscopy (TEM) 

 
To confirm the cellular location of the particles, samples were fixed in 3% glutaraldehyde in 0.1 M cacodylate buffer overnight 

and post-fixed in 1% aqueous osmium tetroxide for 30 min. The samples were then dehydrated in a graded ethanol series and 

infiltrated with Transmit resin (TAAB, UK), then allowed to polymerize overnight at 70°C. Semithin sections were cut (0.5 μm), 

using a Reichert–Jung ultramicrotome, and stained with 2% toluidine blue. Ultra-thin sections were cut (70–90 nm) using the 

same equipment and collected on copper grids, which were then contrasted using 50% methanolic uranyl acetate and Reynolds 

lead citrate (Robards and Wilson, 1993). Imaging was performed on a FEI Tecnai 12 Biotwin TEM (FEI, USA) with up to 120 kV and 

×300 k magnification. 

 

 
2.6. Particle labelling measurement 

 
Flow cytometry was used to measure the level of particle labelling over time. For mitotic arrest, mitomycin C (Sigma Aldrich, 

UK) treatment was used to halt cell division, using a final concentration of 10 μg/ml for a 

2.5 h incubation at 37°C (Nieto et al., 2007). The cells were then washed twice with PBS and harvested for use. Mitotically 

arrested and control cells were cultured over a 7 day period, with cells fixed in 4% PFA for analysis on days 1, 5 and 7. To 

investigate particle transfer between co-cultured populations, GFP-expressing MSCs (gMSCs) labelled with MPs were cultured 

with unlabelled hMSCs. Both populations were mitotically arrested prior to coculture with samples fixed in 4% PFA each day 

over 7 days, before flow-cytometry quantification of particle presence and GFP status. 

2.7. Cell surface marker analysis 
 

hMSCs and pMSCs were assessed for expression of multipotent markers (Dominici et al., 2006), performed 24 h after MP 

labelling (with SiMAG and ScreenMAG, respectively) and 14 days after initial labelling, with repeated passaging and 

relabelling every 3 days to maintain a high MP level throughout. Cells were harvested with trypsin–EDTA and pelleted by 

centrifugation for 5 min at 200 × g before washing in PBS. The cell pellets were then resuspended in 100 μl PBS supplemented 

with 5 μl antibodies against CD29 (Abcam, UK), CD105, CD34 and CD73 (AbdSerotec, UK), CD90 and SSEA4 (eBiosciences, 

USA) for 30 min at room temperature, before two PBS washes and flow-cytometry analysis. 

2.8. Cell viability assays 
 

The resazurin metabolic assay was performed to determine metabolic changes, using a working solution consisting of 10% v/v 

Presto Blue stock solution, prepared according to the manufacturer’s instructions. After 45 min of incubation, the fluorescent 

signals of 100 μl samples were measured at 535 nm excitation and 615 nm emission in triplicate, using an Infinite 200 PRO plate 

reader and i-control software (Tecan, Switzerland). 

Impact on membrane integrity was assessed using a Live/Dead® AlexaFluor® 488 fixable viability dye. Cells were harvested 

with trypsin–EDTA and pelleted by centrifugation for 5 min at 200 × g, washed twice with PBS and resuspended in 100 μl 

amine-reactive dye working solution, consisting of 1% v/v amine-reactive DMSO stock in PBS. Following 15 min incubation at 

room temperature, the cells were rinsed twice with PBS and resuspended in 200 μl PBS prior to measurement on a Guava 

EasyCyte 8HT flow cytometer. Unlabelled cells were used as viable controls and DMSO or PFA fixative treatments provided 

toxicity controls. 

 

2.9. Single-cell gel electrophoresis (comet) assay 
 



 

 

Potential damage to the DNA was assessed with the alkaline comet assay (Seedhouse et al., 2006). hMSCs were grown in 

monolayer and either left unlabelled or labelled with 10 μg/ml or 100 μg/ml SiMAG for 24 h. Following trypsinization, cells 

were washed once with PBS and resuspended in low melting point agarose (Trevigen, UK) at 105 cells/ml. Comet assay 

alkaline control cells were used as a positive control for DNA damage (Trevigen). Cell-containing agarose was immediately 

spread on comet slides (Trevigen) and left to harden before complete immersion in cell lysis buffer (Trevigen). Lysis was 

performed overnight at 4°C in the dark. Following this, the lysis buffer was removed and the slides immersed in a UV-

protected electrophoresis tank containing TBE running buffer and allowed to stand for 60 min. Voltage was set at 25 V/CM 

distance between electrodes and running time at 40 min. Following running, the slides were removed from the buffer and washed 

three times in distilled water before dipping in ethanol for 1 min and drying overnight. The dry comet slides were stained with 75 

μl 0.2% SYBR Green in TBE buffer/agarose droplets. The samples were immediately imaged under a rhodamine filter, using an 

Olympus BX40 microscope. Comet tails were analysed using Comet Assay III image analysis software (Perceptive Instruments, 

UK); 50 comet images were obtained from each of the duplicate gel spots and each experimental condition was repeated three 

times; therefore, 600 images were scored in total for each treatment. The tail moment was used in all analysis. 

 

2.10. Mesenchymal differentiation 
 

For differentiation assays, hMSCs were incubated for 21 days in the relevant differentiation media. For osteogenic assays, cells 

were seeded at 5 × 103 cells/cm2 in well plates (Sigma-Aldrich, UK); the medium was then changed (considered as day 0) every 3 

days for 21 days. With either control medium or osteogenic induction DMEM supplemented with 100 nM dexamethasone, 0.05 

mM L-ascorbic acid 2-phosphate and 10 mM β-glycerophosphate. For adipogenic assays, cells were seeded at 1 × 104 cells/cm2 

in well plates (Sigma-Aldrich, UK); the medium was then changed (considered as day 0) every 3 days for 21 days, with either 

control medium or adipogenic induction highglucose (4500 mg/l) DMEM supplemented with 1 μM dexamethasone, 500 μM 

isobutylmethylxanthine, 10 μg/ml insulin and 1 μM rosiglitazone. For chondrogenic assays, cells were seeded at 37.5 × 104 

cells/cm2 in flasks for the labelling duration; cells were then detached and 200 μl 

1.25 × 106 cells/ml cell suspensions added to 96-well Vbottom plates (Nalge Nunc International, USA) and spun at 450 × g for 10 

min. Following 24 h attachment duration, the medium was then changed every day for 21 days with either control medium 

or chondrogenic induction high-glucose (4500 mg/l) DMEM supplemented with 

2 mM L-glutamine, 0.1 μM dexamethasone, 50 μg/ml ascorbic acid phosphate, 1 mM sodium pyruvate, 40 μg/ml Proline, 10 ng/ml 

TGFβ and 1× ITS Liquid Media Supplement (Sigma-Aldrich, UK). 

 

2.11. Differentiation assays 
 

Lipid-containing cells were identified using oil red O (Sheng et al., 2007). The cells were washed with PBS and fixed at room 

temperature for 15 min in 4% v/v PFA. The cells were then washed twice with distilled water and incubated with oil red O 

working solution added (180 mg/l oil red O in 60% isopropanol/40% distilled water) for 30 min at ambient temperature. The 

samples were then washed and imaged before extraction of the incorporated stain with isopropanol to measure absorption at 

510 nm on an Infinite 200 PRO plate reader and i-control software (Tecan, Switzerland). Mineralized nodules were identified 

using von Kossa staining (Wang et al., 2006). Cells were washed with PBS and fixed at room temperature for 15 min in 4% PFA. 

The cells were then washed three times with distilled water and incubated with 1% silver nitrate in distilled water (Sigma-

Aldrich, UK) under a UV lamp for 15 min. The samples were washed three times with distilled water, incubated for 5 min with 

2.5% sodium thiosulphate solution (Sigma-Aldrich, UK), washed again with distilled water and imaged using an Eclipse TS100 

inverted microscope (Nikon, Japan). 

Sulphated glycosaminoglycans detected with the dye 1,9-dimethylmethylene blue (DMMB) were used as an indicator of 

chondrogenesis. Chondrogenic micromasses were freeze–thawed three times to partially disaggregate them, followed by 

papain digestion (sodium phosphate 

0.1 M, cysteine hydrochloride 5 mM, EDTA 5 mM and papain 45.12 μM in distilled water, pH adjusted to 6.5) overnight at 60°C. 

Aliquots of digested sample were stained with DMMB dye solution (0.03 M sodium formate, 

0.046 mM DMMB, 85.5 mM ethanol and 53 mM formic acid in distilled water), left for 10 min at room temperature and read 

for absorbance at 540 nm on an Infinite 

200 PRO plate reader and i-control software (Tecan, Switzerland). Aliquots of digested sample were also taken for DNA 

content analysis with CyQUANT® to allow for normalization. CyQUANT® GR dye/cell-lysis buffer was added to the samples 

and incubated for 5 min at room temperature. The samples were analysed on an Infinite 

200 PRO plate reader and i-control software (Tecan, Switzerland). 

 



 

 

2.12. Directed migration assays 
 

For the vertical migration model, hMSCs were labelled with concentrations in the range 2.5–100 μg/ml alongside unlabelled 

control cells for 24 h. The cells were then harvested and resuspended  to  a  concentration  of 1 × 105 cells/ml. 20 μl drops 

were deposited, in quadruplicate, on the inside of a multiwell plate lid, which was carefully placed to form hanging drops 

suspended above humidified wells. A magnetic array constructed from 10 × 3 mm neodymium magnets (2800 gauss; 

Magnet Expert, UK) was placed above each well, and after 24 h the proportion of cells attached to the undersurface of 

the lid was evaluated after toluidine blue staining (0.1% for 10 min) and imaging using a 41 Megapixel PureView Zeiss 

Camera (Nokia, Finland). Quantitative 2D image density analysis was performed using ImageJ (NIH, USA). For the 

transmigration assay, SiMAG-labelled pMSCs (0, 1 and 10 10 μg/ml) were seeded at a concentration of 104 cells/collagen 

transwell insert (Corning, UK) and allowed to attach for 24 h. The plates were either placed on a magnetic array mimicking a 

standard 24-well plate layout or cultured without a magnetic field for 24 h. The collagen layer was then gently removed and 

the transwell completely washed three times with PBS. Migrated cells located on the underside of the transwell were fixed 

using 4% formalin for 1 h, stained with DAPI and imaged using a fluorescent microscope. Five independent areas of the well 

were imaged (top, bottom, left, right and centre) and averaged for each sample. 

 

2.13. MRI imaging 
 

To establish the ex vivo knee model, chondrocytes were isolated from porcine articular knee cartilage (Staffordshire Meat Packers, 

Stoke-on-Trent, UK) 2 h post-slaughter, based on a technique adapted from Hayman et al. (2006). Cartilage was carefully removed from 

the upper condyles of the knee, finely diced, weighed and rinsed in PBS and 2% penicillin– streptomycin. After overnight incubation 

in chondrocyte isolation medium consisting of DMEM/HAM’S F12 (Lonza Biowhittaker, UK), 2% penicillin–streptomycin, 50 μg/ml 

sterilized ascorbate (Sigma-Aldrich, UK), 1 mg/ml clostridial collagenase (Sigma-Aldrich) and 0.1 mg/ml DNAse (SigmaAldrich), the 

digested cartilage suspension was filtered through 100 μm cell strainer and centrifuged at 600 × g for 10 min. Chondrocytes were 

seeded at 2 × 104 cells/cm2 and cultured in chondrocyte proliferation medium (DMEM/HAM’S F12 supplemented with 10% FBS, 1% L-

glutamine and 1% penicillin–streptomycin). 

The in vitro MRI visibility threshold of SiMAG-labelled cells populations (0, 1, 5, 10 and 100 μg/ml) was investi- 

gated at varying cell densities (5 × 105, 105 and 104) in 

2 mg/ml rat tail type I collagen gel (BD Biosciences, UK). The samples were then imaged using a 2.3 T Brucker animal scanner 

(NTU, Nottingham, UK), with MSME sequences using 1000 ms repetition time, 10.25 ms echo time with eight echoes, and a 

matrix size of 256 × 192 with a spatial resolution of 0.469 × 0.625 mm. 

Ex vivo imaging was carried out using a cadaveric porcine knee model of articular cartilage damage to assess the visibility 

threshold of MP-labelled cells in a clinically relevant model of autologous chondrocyte implantation (ACI) to treat cartilage 

damage (Chiang et al., 2005). Pig legs were processed to remove all surrounding tissue, using a surgical scalpel. Once the knee 

had been isolated, the patellar tendon was sliced and the patella pulled back to reveal the articulating ends of the femur and 

tibia. The knee was then bent to fully expose the upper condyles, and cartilage flaps were created (1.5 × 0.5 × 1.5 cm) across 

the upper condyles of the knee. Two defects were created on each condyle (left and right), at least 0.5 cm apart. MP-labelled 

cells were suspended in a collagen type 1 gel solution (4.5 mg/ml) and injected within the defect while the knee was in the bent 

upright position, taking care to ensure no bubbles or leakage occurred. After the gels had set (1 h, 37°C) the leg was 

straightened and  the patella replaced and securely bandaged to prevent excess movement, before storage at –20°C until 

imaging at the MARIARC centre (Liverpool University), using a Siemens Symphony 1.5 T scanner. One day prior to MR imaging, 

the samples were defrosted, placed within a circularly polarized extremity coil, and double-echo steadystate (DESS) sequences 

were applied, in agreement with MRI scanning conditions implemented in the imaging and diagnosis of human knee 

pathologies. 

 
2.14. Statistical analysis 

 
Statistical analysis was in the form of ANOVAs performed using GraphPad PRISM (GraphPad Software, USA). Tukey’s post hoc 

analysis was performed to determine the significance between subgroups of the analysed population. Significance was shown 

as p < 0.05, p < 0.01, p < 0.001 and p < 0.0001. 

 

  



 

 

 
3. Results 

3.1. Cytocompatibility study 
 

To evaluate the capacity of MSCs to take up MPs, monolayer cultures were incubated overnight with various concentrations of 

particles. Particle uptake in hMSCs following a 24 h incubation period with MPs was analysed by fluorescence microscopy and 

flow cytometry (Figure 1). 

Incubation with increasing doses of MPs led to a proportional increase in the fluorescence signal measured for hMSCs 

(Figure 1A). Time-lapse microscopy (see supporting information, Video S1) and fluorescence microscopy (Figure 1B) 

confirmed particle uptake while the cells retained morphology after labelling. Prussian blue staining allowed visualization of 

the iron-containing particles present within the cells (Figure 1C). TEM imaging confirmed the presence of MPs within the 

cytoplasm and highlighted their localization to vesicles found to congregate around the nucleus (Figure 1D). The efficiency of 

MP uptake was compared under different serum concentrations using flow cytometry, which demonstrated a dose-

dependent negative effect of serum on cell labelling (Figure 1E). 

Following uptake, particle retention was analysed over time in culture (Figure 2). In dividing hMSCs, MPs were found to be 

progressively diluted until day 7, when they were not detected (Figure 2A). In mitotically arrested cells, however, the particles 

were retained more efficiently and showed a significant retention compared to untreated cells at day 7, suggesting that the MP 

load might be divided between daughter cells. Observation of labelled cells showed the occasional presence of some isolated 

particles within cell projections (Figure 2B). 

To investigate the fate of the particles over time, a coculture experiment was set up to examine whether MPs may be 

transferred between labelled and unlabelled hMSC populations (Figure 2C). GFP-expressing MSCs (gMSCs) labelled with MPs 

were mixed with control unlabelled hMSCs, and over 7 days in co-culture cells were analysed by flow cytometry to evaluate the 

proportion of MPcontaining cells within each MSC population. While a decrease in the percentage of MP-containing gMSCs 

was seen over time, there was no detectable appearance o f  MP-containing cells in the unlabelled hMSC population over 7 

days. 

The effect of MP exposure on cell identity was analysed through surface marker analysis and cell integrity assays labelling 

(Figure 3A). Cultures exposed to serial MP labelling every 3 days for 14 days to maintain maximum dose similarly demonstrated 

retained marker expression, confirming that exposure to MPs did not elicit a significant change in marker identity (see supporting 

information, Figure S1). 

The effect of MP exposure was further investigated through metabolic assays of MSCs labelled with increasing doses of 

SiMAG MPs, using a resazurin-based dye, Presto Blue. The data gathered demonstrated a slight increase in metabolic activity 

at low particle doses and a decreased metabolic activity associated with very high doses 24 h after labelling (Figure 3B). This 

increased metabolic activity at low MP doses appeared to be lost 48 h after labelling (data not shown). Cell membrane integrity, 

assessed using flow cytometry, indicated that no effect of MP labelling could be detected 24 h (Figure 3C) after labelling, for 

either pMSCs cells or hMSCs. 

Since MPs were found to accumulate close to the nucleus, their possible effect on cellular DNA was examined using the 

comet assay, which provides a sensitive measure of DNA damage throughout the population (Figure 3D). No statistically 

significant increase in DNA damage was observed at 10–100 μg/ml when compared to unlabelled MSC controls (p > 0.05) 

(Figure 3). Using markers associated with MSCs, comparable positive expression of CD90, CD105, CD73, SSEA4 and CD29, with 

negative expression of CD34, was confirmed between labelled and unlabelled control populations 24 h after. 

 

Application of MSC labelling for regenerative medicine 

After establishing the cytocompatibility of particle labelling, the efficiency of the differentiation response obtained under 

various culture conditions was evaluated in MSCs. hMSCs, either unlabelled or labelled with SiMAG, were treated with 

osteogenic, adipogenic and chondrogenic media for 7 and 14 days to measure their response with and without MP exposure 

(Figure 4). After 21 days in culture with relevant differentiation media, histological staining (Figure 4A–C) showed successful 

responses, as detected through mineral deposition (von Kossa staining for the osteogenic condition), lipid accumulation (oil 

red O staining for the adipogenic condition) and glycosaminoglycan (GAG) production (Alcian blue staining for the chondrogenic 

condition). Subsequent quantitative assays revealed no significant difference between unlabelled and MP-labelled cell 

populations for the osteogenic alkaline phosphatase activity and alizarin red O assays (Figure 4D, E) or for adipogenic oil red O 

staining (Figure 4F). Quantitation of GAG formation in response to chondrogenic treatment (Figure 4G) showed no detrimental 

effect of MP labelling, which produced a slight detectable increase in signal compared to unlabelled controls. These data 

demonstrate no reduction in differentiation capacity following particle labelling. 
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The iron core present in SiMAG particles makes them susceptible to magnetic forces, a feature potentially beneficial for 

novel tissue-engineering approaches. In order to test whether MSC labelling with SiMAG could provide added control over the 

behaviour of the cells, a migration assay was run to measure the cellular response in vitro (Figure 5). When exposed to a 

permanent magnet located above the samples for 24 h (Figure 5A), labelled cells displayed a significant higher vertical 

migration towards the magnet when compared to unlabelled samples, which failed to migrate and adhere. When observing 

cells recruited to the lid in response to magnet exposure, cells labelled with higher MP concentrations appeared to aggregate 

over a smaller, more defined area at the centre of the lid, rather than spread over a larger surface area, as seen at the lower dose 

(2.5 μg/ml), possibly due to a stronger cell response at the point of highest field strength, but this 3D aggregation could not be 

accurately quantified using this 2D adherence assay. 

To confirm the magnet-assisted migration response of cells labelled using particle concentrations previously shown to maintain 

cellular integrity, a further experimental model was used, in which MSCs were seeded onto a porous collagen scaffold and exposed to a 

magnetic field (Figure 5B). Cells labelled with 10 μg/ml MPs showed a significantly enhanced migratory capacity compared to 

unlabelled cells (p < 0.001). SiMAG particles can also act as potential contrast agents, which could allow post-delivery of cellular 

therapies for applications such as cartilage repair. In such approaches, an exogenously expanded cell population would be delivered 

to a discrete site, where it would need to be retained in order to promote local tissue repair (El Haj et al., 2014). The ability to image and 

monitor the implanted cells would allow monitoring of the therapy over time (Markides et al., 2013). In order to identify the variables 

for cell tracking after labelling, the MRI visibility thresholds required in terms of particle concentration and cell number  were  

established  first in vitro and then ina preclinical large animal model of cell injection (Figure 6). When monitored in vitro (Figure 6A), 

SiMAG-labelled MSCs and chondrocytes were clearly detectable by MRI with significant dose-dependent contrast when using doses 

in the range 104–0.5 × 106 cells. Teff (Figure 6B) was seen to decrease with increasing cell numbers and particle concentrations 

corresponding to an increasing Fe content. A minimum visibility threshold of 5 μg/ml used with 5 × 105 labelled cells was identified in 

vitro. The detectability of MSC and chondrocyte cell populations after SiMAG labelling was found to be comparable in this model. 

To further evaluate imaging capability in vivo, labelled cell populations were resuspended in a collagen type I gel, a 

substrate widely used in cartilage tissue engineering (Deponti et al., 2013), injected into a porcine knee model (Chiang et al., 

2005) and MR-imaged using specific T2weighted sequences (Figure 6C). In this clinically relevant model, the effect of particle 

concentration on MRI detection was analysed by implanting varying cell doses (104, 105 and 5 × 106) of SiMAG-labelled cells to 

determine the visibility threshold, using two particle concentrations (5 and 10 μg/ml). A combination of 105 cells labelled with 

10 μg/ml was found to provide suitable contrast to enable graft detection by MRI within the host tissue. 

 

 

4. Discussion 

4.1. Efficient unassisted labelling of hMSCs 
 

Magnetic particles offer interesting properties for a multitude of biological and biomedical applications. Superparamagnetic iron oxide 

nanoparticles have already demonstrated clinical efficacy and safety for MRI imaging (Colombo et al., 2012) and are now being 

investigated for more advanced theranostic applications for cell tracking and manipulation (Corot et al., 2006; Hu et al., 2014). 

MRI agents are developed to be bio-inert, in order to minimize interaction with the cells within the body. Conversely, cell-

labelling agents must interact with the cell of interest to enable labelling without impacting upon its normal function. Thus, 

characterization of cell–MP interactions needs to be thoroughly assessed for advanced applications in cell-based therapies. In 

this study, we evaluated the suitability of commercially available 1 μm silicacoated particles as a non-toxic labelling agent for 

cell tracking and manipulation towards both in vitro and in vivo applications. 

24 h of incubation of MSCs with MPs was found to allow efficient labelling of the cell population, with > 95% of cells labelled 

at 10 μg/ml, as measured by flow cytometry. This is in line with previous publications describing  near-100% cell labelling 

using visual inspection following Prussian blue staining or iron measurements (Balakumaran et al., 2010; Kostura et al., 2004; Liu 

et al., 2011; Markides et al., 2013; Pawelczyk et al., 2006). A dose of 10 μg/ml was selected as the standard labelling concentration 

for MSCs, which was comparable to other reports (7 μg/ml, Liu et al., 2011; 25 μg/ml, Kostura et al., 2004). Cell labelling 

experiments demonstrated rapid uptake of MPs into MSCs, resulting in efficient cell labelling without the need for an added 

chemical carrier. Previous studies have suggested that stem cell populations may benefit from assisted MP uptake 

through cellular targeting (Lewin et al., 2000) or the use of transfection agents, including polyethylenimine, protamine 

sulphate and polylysine (Arbab et al., 2004; Balakumaran et al., 2010; England et al., 2013; Jing et al., 2008a; Kostura et al., 

2004; Schafer et al., 2010). Interestingly, past reports have mentioned inefficient uptake by rat MSCs (Jing et al., 2008b) and 

undetectable uptake with human MSCs (Kostura et al., 2004) when different particles were used alone. In contrast, our results 

confirm highly efficient uptake of the SiMAG particles in the absence of any additional facilitator, in line with observations 

carried out in other stem cell populations (Chen et al., 2013). Particle surface modifications influence the characteristics of 

size, charge, toxicity and degradability of the particle (Li et al., 2013) and have previously been reported to influence particle–



 

 

cell interactions (Gupta and Gupta, 2005; Sakhtianchi et al., 2013; Zhao et al., 2011). The SiMAG particles used here were 

silanol-coated, presenting an activated Si–OH surface arrangement. One of the main benefits of the silanol surface is a high 

colloidal suspension stability, even in high volume fractions, through pH changes and electrolyte disturbances (Mulvaney et 

al., 2000), all of which are likely to occur to some degree during application in a physiological environment. When silanol-

coated MPs come into contact with the membrane, their association with the phosphatidyl choline-rich regions of the 

membrane (Zhao et al., 2011) is thought to elicit a membrane-wrapping effect as other regions associate with the rigid 

curvature of the silanol surface. The subsequent entry of the MPs is dependent upon the energy released through the 

exothermic membranewrapping effect and the energy required to bend the membrane around the MP completely. In this 

situation, the dense nature of these MPs is considered to decrease the energy required for deformation of the membrane, 

thus facilitating engulfment (Zhao et al., 2011), as suggested by the report that larger MPs are more thermodynamically 

favourable for endocytosis (Slowing et al., 2009). Surface properties of the particles may also influence their interaction with 

natural proteins from serum (Wiogo et al., 2011). The data presented here further demonstrate that the presence of serum 

diminishes SiMAG particle labelling in a dose-dependent manner, potentially due to diminished accessibility of the surface 

silanol groups to the membrane, in line with previous reports supporting cell loading in serum-free conditions (Wilhelm and 

Gazeau, 2008).  

The efficient uptake of the SiMAG particles allowed labelled stem cell populations to be monitored through both their iron 

content and fluorescent analysis techniques. Particles appeared to cross the extracellular membrane, possibly through 

membrane wrapping and engulfment, as previously described for silica particles (Zhao et al., 2011), although the exact nature 

of this process requires further examination. Once inside the cell, the particles accumulated at a central location inside 

endosome-like structures proximal to the nucleus, and no particle was observed inside the nuclear space, likely due to their 

micron size and contrary to what has been reported for particles <70 nm (Chen and von Mikecz, 2005). Such an intracellular 

particle distribution has previously been observed in MSCs (Chang et al., 2012; Neuberger et al., 2005) and other cell types 

(Robert et al., 2010b; Sun et al., 2012; Wilhelm and Gazeau, 2008). 

 
 

4.2. Cellular compatibility 
 

Whilst previous studies have described the use of different particle types for cell labelling, few have focused on the potential 

implications of MP labelling for MSC health and function. Among these, most reports have investigated the 

biocompatibility of smaller MPs used with an auxiliary  labelling reagent (Arbab et al., 2004; 

Balakumaran et al., 2010). Here, the suitability of SiMAG labelling for human MSCs was carefully examined through a range of 

parameters reflecting the integrity and cell health of labelled MSCs. Previously published studies on MP cytocompatibility 

have largely relied on the assessment of cell morphology combined to MTT/MTS assays; however, these have demonstrated 

questionable reliability for particle and nanomaterials studies (Laaksonen et al., 2007). A resazurin-based metabolic 

measurement was therefore selected here, and indicated a slight increase in metabolic activity after particle labelling at low 

doses of particle uptake. This mild effect, which has been mentioned in different experimental conditions, could be linked to 

homeostatic mechanisms increasing lipid membrane synthesis in the cell to compensate for extracellular membrane 

disturbance associated with particle internalization (Kowalski et al., 1972; McNeil and Steinhardt, 1997). Similarly, MSC surface 

marker expression analysed before and after labelling showed that both primary and established MSCs retained their cell 

identity (Dominici et al., 2006). This matches observations reported for different models and labelling conditions, which 

reported no significant change in MSCs (Balakumaran et al., 2010), and similar stable marker expression in haematopoietic 

stem cell populations (Arbab et al., 2004). Although previous studies have suggested good MP cytocompatibility for cell 

cultures (Budde and Frank, 2009; Heymer et al., 2008; Li et al., 2013), some observations using small-sized MPs (60 nm) have 

described changes in MSC migration, colony-formation efficiency and even differentiation after particle labelling (Schafer et 

al., 2009). Similar MP concentrations have also been reported to cause significant toxicity in neuronal and glial cells, while 

they did not appear to affect other cell types, such as cardiomyogenic and pancreatic cells (Laurent et al., 2012; Mahmoudi et 

al., 2011). It is therefore important to evaluate the toxicity of each MP labelling protocol to be used in the target cell model for 

the application considered. MP-related toxicity may arise from the leaching of ions from the metal core and the biodegradation 

polymer coating, which could cause oxidative stress (Kim et al., 2011) through the leaching of metal ions from the core, or the 

release of oxidants by enzymatic degradation of the MPs (Mahmoudi et al., 2012). Although iron can be metabolized in the 

human body (Berry, 2005; Bulte et al., 2009; Henning et al., 2009; Ju et al., 2006; Kim et al., 2010a), high quantities of Fe can impair 

viability and normal cell function (He et al., 2007; Li et al., 2013), underlining the need for a suitable balance between high Fe 

incorporation and safe cell function. Particle concentrations in the range 2.8– 400 μg/ml have been reportedly used for in vivo 

tracking (Farrell et al., 2009; He et al., 2007; Jing et al., 2008b; Kim et al., 2010b). The particle concentration chosen for this 

study (10 μg/ml), which was selected within the lower end of this range, showed no significant effect on cell viability or on the level 

of DNA damage in the MSC population, as measured by the comet assay. This was true even for higher concentrations (100 μg/ml) 

and is in line with other studies that have shown low toxicity of both Fe3O4and Fe2O3based particles (Karlsson et al., 2009). 
In addition to preserving the health of labelled cell 



 

 

populations for future cell therapies, maintaining their functionality is equally critical if they are to deliver a therapeutic effect. 

Reports published to date have provided mixed results for the impact of MPs on MSC differentiation. While a majority of studies 

reported no significant change based on histological or molecular assays, some negative effects on chondrogenesis have been 

observed (Bulte et al., 2004; Kostura et al., 2004). To examine the suitability of SiMAG-labelled MSCs to fulfil a therapeutic role, 

we examined their ability to differentiate into the osteogenic, adipogenic and chondrogenic lineages and found it to be 

maintained when examined both qualitatively and quantitatively. Bone nodules and lipid droplets were present in their 

respective cultures, with no statistically significant differences between unlabelled and labelled cell populations. Chondrogenic 

differentiation yielded micromass pellets demonstrating positive staining of glycosaminoglycans (GAGs) for both control and 

MP-labelled cultures. Closer examination revealed an increase in GAGs measured in MP-labelled pellets compared with the 

unlabelled samples, which could be due to more efficient centrifugal aggregation of the MP-labelled cells, as observed in our 

culture, since this is an important experimental parameter for the establishment of micromass cultures. 

 

4.3. Control of target cell populations 
 

The possible dilution of the particle load by either exocytosis or cell division represents an inherent limitation of MPs and MRI-

based tracking in cell-based therapies, which could be of concern in long-term animal studies. MSC labelling was detected 

here during a 7 day period in the case of dividing cell populations, beyond which the intracellular particle concentrations 

returned to control levels. However, this was not solely dependent upon cell division, as previously observed with smaller 

particles (Kim et al., 2012; Wilhelm and Gazeau, 2008), since non-dividing populations also demonstrated particle loss, albeit at a 

reduced rate. Arrested cells still demonstrated around 30% labelling 7 days after labelling, suggesting the occurrence of 

particle release or biodegradation in addition to mitotic dilution. Particle loss has been described as size-dependent, with 

smaller particles reportedly exocytosed at a faster rate than larger particles (Sakhtianchi et al., 2013). Interestingly, this would 

fit with the observation of MP-labelled mouse MSCs implanted subcutaneously, showing halving of the MRI signal over 3 days 

and over one-third of the initial signal detected by day 7 (Liu et al., 2011). Berman et al. (2011) suggested particle decrease to 

be an indicator of viable cells, as non-viable cells may also retain the particles due to an inability to divide or actively 

exocytose. 

It is unclear whether magnetic labelling of MSCs may be associated with particle loss in vivo, and whether this may lead to 

subsequent unspecific labelling through secondary particle uptake by an unintended population. Results from our co-culture 

model combining labelled and unlabelled MSCs showed that the gradual loss of particles from a labelled cell population did not 

result in any significant uptake by neighbouring unlabelled populations. This suggested that transfer of particles either 

directly or indirectly through release into the medium is not occurring at a population level. This absence of apparent 

secondary particle uptake may be due to the presence of protein coronas on released particles, obstructing the surface silanol 

groups from associating with the membrane (Foldbjerg et al., 2013; Zhao et al., 2011), which could decrease subsequent 

binding and cell internalization. This may represent a long-term experimental and safety benefit ensuring limiting possible 

leakage of the label from the target cells to unrelated cell populations in vivo. Particles released in vivo may, furthermore, be 

phagocytosed by macrophages, a process typically more efficient for larger particles, such as the ones used here, than for 

smaller ones (Burtea et al., 2008). This would further reduce the amount of released particles available for secondary uptake 

and limit the putative unspecific labelling of surrounding tissues. 

The use of MRI for cell-based therapies has a dual 

purpose. Not only can it precisely image the anatomical damage site and track implanted cells but it can also evaluate the 

extent of the repair process at the damage site (Beckmann et al., 2003; Henderson et al., 2003). It is therefore important to 

analyse the extent to which implanted cell populations could be detected within anatomical structures in a realistic clinical 

model, such as the porcine knee model presented here, which offers dimensions in line with that of human tissue. 

Implantation of SiMAG-labelled cells generated significant contrast within this system and was clearly detected against 

anatomical structures. The visibility threshold of SiMAGlabelled cells using a 1.5 T scanner was found to be in agreement with the 

threshold established ex vivo (105 cells labelled with 5–10 μg/ml). These values are compatible with published studies, varying from 

single cell detection with 11.7 T scanning and μm-sized particles (Bulte and Kraitchman, 2004; Li et al., 2009) to the detection of 1 × 

106 cells labelled with 12 μg/ml using a 3 T machine (Chen et al., 2012). The results presented here thus confirm that SiMAG-based 

MSC labelling can meet the technical criteria outlined for use in preclinical studies (Frank et al., 2004). 

 

5. Conclusions 

Beyond imaging, magnetic particles are widely exploited in separation techniques for cell suspensions (Plouffe et al., 2015). In 

vitro experiments carried out in this study confirm that their use can be applied to the spatial control of cell populations. 

Contactless magnetic control of cell movement can further enhance patterning and seeding procedures for both 2D culture and 

for 3D tissue-engineered scaffolds (Robert et al., 2010a; Yanai et al., 2012). Although ex vivo models have not reported consistent 



 

 

magneticallydriven migration (Schafer et al., 2010), possibly due to variations in the particles and magnets used, such targeting 

approaches may open novel therapeutic applications using permanent magnet-, electromagnetor MR-assisted cell delivery (El Haj et 

al., 2012; Riegler et al., 2010; Robert et al., 2010a; Vaněček et al., 2012). 

Emerging MSC therapies, such as Prochymal, currently involve the use of high cell doses (in excess of 108 cells) (Hare et al., 

2009), which may in the future be reduced through improved cell delivery strategies, such as magnetically-assisted cell 

targeting, to reduce the dose needed. Careful prior assessments of the particle uptake, retention profile and biological 

responses associated with such strategies will be critical to ensure the safe development of enhanced targeting therapies. A 

recent report introducing the in vivo labelling of stem cells prior to their harvest and allogeneic use (Khurana et al., 2013) 

underlined the requirement to ascertain the cellular innocuousness of MPs for the targeted population. The data presented in 

our study support the suitability of  1 μm SiMAG superparamagnetic iron oxide particles as a possible cell tracking and cell 

manipulation agent for stem cell-based therapies. Their large size and coating properties, facilitating uptake, biocompatibility 

and visibility for MRI, make them favourable candidates for further in vivo preclinical research into advanced tissue engineering 

approaches. 
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S1. Long-term marker expression in MSC cultures analysed after 14 days of particle labelling 



 

 

 
 

Figure 1. MSCs labelled with fluorescently labelled MPs, analysed using both flow cytometry and microscopy. (A) Flow cytometry analysis (left) 

and corresponding quantification (right), showing increased labelling with increasing MP concentrations (p < 0.001, p < 0.0001; n = 3). (B) 

Fluorescence imaging of hMSCs labelled with 10 μg/ml particles, showing MPs (yellow), cell outline (phalloidin; green) and nuclear 

counterstain (Hoechst 33342; blue); bar = 25 μm. (C) Prussian blue staining, highlighting internalized iron-rich MPs within the cell; bar = 100 μm. 

(D) TEM imaging of MPs, showing that internalized particles are contained within vesicles (arrowhead), which merge into larger vacuoles (arrow) 

near the nucleus ( ); bar = 5 μm (top) and 10 μm (bottom). (E) Negative effect of serum concentration on the efficiency of MP uptake, measured 

at 24 h after labelling ( p < 0.05,  p < 0.01, p < 0.0001; n = 3). 

[Colour figure can be viewed at wileyonlinelibrary.com] 
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Figure 2. Kinetics of MSC particle retention after labelling with 10 μg/ml particles. (A) Flow-cytometry analysis of MPs in labelled cells up to 7 

days after labelling, showing gradual decrease in dividing cell populations (light grey), while particle dilution is reduced by mitomycin C-

mediated inhibition of cell division (dark grey) ( p < 0.05, p < 0.0001; n = 3). (B) Fluorescence microscopy of phalloidin staining (green) with DAPI 

counterstain (blue), showing rare particles (red) detected in cell processes. (C) Distribution of MPs between a labelled (population 1, gMSCs) 

and unlabelled (population 2, hMSCs) MSC population, analysed by flow cytometry over 7 days of co-culture, showing no evidence of 

secondary particle uptake; statistical analysis, showing labelling of population 1 between days 0–4 and 6 compared to day 7 but no 

statistically significant labelling present in population 2 on any day  ( p < 0.001; n = 2). [Colour figure can be viewed at wileyonlinelibrary.com] 
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Figure 3. Cell integrity assessment after particle uptake. (A) MSC marker identity analysed by flow cytometry, demonstrating no discernible 

change in hMSC marker expression following particle labelling (red, 10 μg/ml) compared to unlabelled cells (blue) and the isotype control 

(grey). (B) Metabolic activity assessed through a resazurin analogue (Presto Blue®) at 24 h, demonstrating no significant negative effect of 

particle uptake at therapeutic doses (up to 50 μg/ml) when compared to unlabelled controls and DMSO-mediated toxicity ( p < 0.01, p < 

0.0001; n = 3). (C) Cell membrane integrity assay, showing stable membrane integrity 24 h after labelling with MPs (10 μg/ml); statistical 

significance calculated compared to DMSO-treated or fixed cells ( p < 0.0001; n = 3), no statistically significant difference between treatment 

groups. (D) DNA integrity analysed using the comet assay, showing no statistically significant DNA damage in labelled cells at 10 and 100 μg/ml; 

statistical significance between induced damage (positive control) and other conditions ( p < 0.0001; n = 680), no significant difference 

between unlabelled and MP-labelled conditions. [Colour figure can be viewed at wileyonlinelibrary.com] 
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Figure 4. MSC differentiation in the presence or absence of MPs. (A–C) Differentiation potential under (left panel) standard culture medium or 

(right panel) differentiation treatment of the hMSC populations towards (A) osteogenic, (B) adipogenic and (C) chondrogenic lineages, 

monitored by von Kossa, oil red O and Alcian blue staining, respectively: MP-labelled cell populations  (10 μg/ml) were compared to 

unlabelled populations, with no detectable decrease in differentiation in vitro. (D, E) Quantitative assessment of osteogenic response 

performed at 7 (alkaline phosphatase activity) and 14 (alizarin red S extraction) days, showing statistically significant response to induction 

medium (grey bars) compared to untreated controls (black bars). (F) Adipogenic induction was measured using oil red O extraction, 

demonstrating no statistically significant change in lipid accumulation at either concentration. (G) Chondrogenic response, assessed using the 

DMMB assay normalized to DNA content, showing increased GAGs in both unlabelled and labelled populations compared to their standard 

medium-treated equivalents (  p < 0.0001; n = 5). [Colour  figure can be viewed at wileyonlinelibrary.com] 
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Figure 5. Migration of SiMAG-labelled MSCs in vitro. (A) Hanging drops prepared with cells labelled with increasing MP concentrations were 

incubated in the presence or absence of magnets placed on the upper side of the lid; after 24 h, surface areas covered by cells recruited to 

the surface of the lid (inserts) were imaged and measured ( p < 0.0001; n = 4). (B) MSCs labelled with MPs (0, 1 and 10 μg/ml) over a 24 h 

period within a collagen transwell system and exposed to a magnet for 24 h; migrated cells counted as the average of five fields of view on 

the underside of each transwell ( p < 0.001; n = 3) 
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Figure 6. MRI tracking of SiMAG-labelled hMSCs and chondrocytes. (A, B) Increasing MP concentrations (1, 5 and 10 μg/ml) and cell doses (105 

cells, 5 × 105 cells), showing the MRI visibility threshold of labelled MSCs presented as (A) a Teff map and (B) a corresponding Teff plot. (C) 

Coronal DESS image of labelled chondrocytes implanted in a porcine knee joint (left condyle 105 cells, right condyle 5 × 105 cells), analysed by 

MRI using 5 μg/ml (upper panel) and 10 μg/ml (lower panel) MP concentrations, showing hypo-intense regions of signal voids (yellow arrows); 

red lines highlight the region of interest (ROI). [Colour figure can be viewed at wileyonlinelibrary.com] 
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