294 research outputs found

    Active silver nanoparticles for wound healing

    Get PDF
    In this preliminary study, the silver nanoparticle (Ag NP)-based dressing, ActicoatTM Flex 3, has been applied to a 3D fibroblast cell culture in vitro and to a real partial thickness burn patient. The in vitro results show that Ag NPs greatly reduce mitochondrial activity, while cellular staining techniques show that nuclear integrity is maintained, with no signs of cell death. For the first time, transmission electron microscopy (TEM) and inductively coupled plasma mass spectrometry (ICP-MS) analyses were carried out on skin biopsies taken from a single patient during treatment. The results show that Ag NPs are released as aggregates and are localized in the cytoplasm of fibroblasts. No signs of cell death were observed, and the nanoparticles had different distributions within the cells of the upper and lower dermis. Depth profiles of the Ag concentrations were determined along the skin biopsies. In the healed sample, most of the silver remained in the surface layers, whereas in the unhealed sample, the silver penetrated more deeply. The Ag concentrations in the cell cultures were also determined. Clinical observations and experimental data collected here are consistent with previously published articles and support the safety of Ag NP-based dressing in wound treatment

    (Q)SAR Modelling of Nanomaterial Toxicity - A Critical Review

    Get PDF
    There is an increasing recognition that nanomaterials pose a risk to human health, and that the novel engineered nanomaterials (ENMs) in the nanotechnology industry and their increasing industrial usage poses the most immediate problem for hazard assessment, as many of them remain untested. The large number of materials and their variants (different sizes and coatings for instance) that require testing and ethical pressure towards non-animal testing means that expensive animal bioassay is precluded, and the use of (quantitative) structure activity relationships ((Q)SAR) models as an alternative source of hazard information should be explored. (Q)SAR modelling can be applied to fill the critical knowledge gaps by making the best use of existing data, prioritize physicochemical parameters driving toxicity, and provide practical solutions to the risk assessment problems caused by the diversity of ENMs. This paper covers the core components required for successful application of (Q)SAR technologies to ENMs toxicity prediction, and summarizes the published nano-(Q)SAR studies and outlines the challenges ahead for nano-(Q)SAR modelling. It provides a critical review of (1) the present status of the availability of ENMs characterization/toxicity data, (2) the characterization of nanostructures that meets the need of (Q)SAR analysis, (3) the summary of published nano-(Q)SAR studies and their limitations, (4) the in silico tools for (Q)SAR screening of nanotoxicity and (5) the prospective directions for the development of nano-(Q)SAR models

    Combination Strategies for Targeted Delivery of Nanoparticles for Cancer Therapy

    Get PDF
    Pharmaceuticals, and more recently biopharmaceuticals, have become the mainstay for antineoplastic treatments in combination with surgical interventions and radiation therapy. In recent years, advances have been made in the development of nano-technological interventions for the treatment of cancer alone or in combination with existing therapeutic modalities. Nanotechnology used for therapeutic drug delivery and sensitization of photodynamic, sonodynamic and radiotherapy are now being tested in preclinical and clinical trials for the treatment of cancer. This article will review the current state of the art for nanotechnology therapies with an emphasis on targeted drug delivery and the observed and likely benefits when used in combination with existing therapeutic approaches
    corecore