147 research outputs found

    A novel approach to probe host-pathogen interactions of bovine digital dermatitis, a model of a complex polymicrobial infection

    Get PDF
    Background: Polymicrobial infections represent a great challenge for the clarification of disease etiology and the development of comprehensive diagnostic or therapeutic tools, particularly for fastidious and difficult-to-cultivate bacteria. Using bovine digital dermatitis (DD) as a disease model, we introduce a novel strategy to study the pathogenesis of complex infections. Results: The strategy combines meta-transcriptomics with high-density peptide-microarray technology to screen for in vivo-expressed microbial genes and the host antibody response at the site of infection. Bacterial expression patterns supported the assumption that treponemes were the major DD pathogens but also indicated the active involvement of other phyla (primarily Bacteroidetes). Bacterial genes involved in chemotaxis, flagellar synthesis and protection against oxidative and acidic stress were among the major factors defining the disease. Conclusions: The extraordinary diversity observed in bacterial expression, antigens and host antibody responses between individual cows pointed toward microbial variability as a hallmark of DD. Persistence of infection and DD reinfection in the same individual is common; thus, high microbial diversity may undermine the host's capacity to mount an efficient immune response and maintain immunological memory towards DD. The common antigenic markers identified here using a high-density peptide microarray address this issue and may be useful for future preventive measures against DD.Fil: Marcatili, Paolo. Technical University of Denmark; DinamarcaFil: Nielsen, Martin W.. Technical University of Denmark; DinamarcaFil: Sicheritz Ponten, Thomas. Technical University of Denmark; DinamarcaFil: Jensen, Tim K.. Technical University of Denmark; DinamarcaFil: Schafer Nielsen, Claus. Schafer-N ApS; DinamarcaFil: Boye, Mette. Hospital of Southern Jutland; DinamarcaFil: Nielsen, Morten. Technical University of Denmark; Dinamarca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas ; ArgentinaFil: Klitgaard, Kirstine. Technical University of Denmark; Dinamarc

    Trichomonas vaginalis vast BspA-like gene family: evidence for functional diversity from structural organisation and transcriptomics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Trichomonas vaginalis </it>is the most common non-viral human sexually transmitted pathogen and importantly, contributes to facilitating the spread of HIV. Yet very little is known about its surface and secreted proteins mediating interactions with, and permitting the invasion and colonisation of, the host mucosa. Initial annotations of <it>T. vaginalis </it>genome identified a plethora of candidate extracellular proteins.</p> <p>Results</p> <p>Data mining of the <it>T. vaginalis </it>genome identified 911 BspA-like entries (TvBspA) sharing TpLRR-like leucine-rich repeats, which represent the largest gene family encoding potential extracellular proteins for the pathogen. A broad range of microorganisms encoding BspA-like proteins was identified and these are mainly known to live on mucosal surfaces, among these <it>T. vaginalis </it>is endowed with the largest gene family. Over 190 TvBspA proteins with inferred transmembrane domains were characterised by a considerable structural diversity between their TpLRR and other types of repetitive sequences and two subfamilies possessed distinct classic sorting signal motifs for endocytosis. One TvBspA subfamily also shared a glycine-rich protein domain with proteins from <it>Clostridium difficile </it>pathogenic strains and <it>C. difficile </it>phages. Consistent with the hypothesis that TvBspA protein structural diversity implies diverse roles, we demonstrated for several TvBspA genes differential expression at the transcript level in different growth conditions. Identified variants of repetitive segments between several TvBspA paralogues and orthologues from two clinical isolates were also consistent with TpLRR and other repetitive sequences to be functionally important. For one TvBspA protein cell surface expression and antibody responses by both female and male <it>T. vaginalis </it>infected patients were also demonstrated.</p> <p>Conclusions</p> <p>The biased mucosal habitat for microbial species encoding BspA-like proteins, the characterisation of a vast structural diversity for the TvBspA proteins, differential expression of a subset of TvBspA genes and the cellular localisation and immunological data for one TvBspA; all point to the importance of the TvBspA proteins to various aspects of <it>T. vaginalis </it>pathobiology at the host-pathogen interface.</p

    PhylomeDB: a database for genome-wide collections of gene phylogenies

    Get PDF
    The complete collection of evolutionary histories of all genes in a genome, also known as phylome, constitutes a valuable source of information. The reconstruction of phylomes has been previously prevented by large demands of time and computer power, but is now feasible thanks to recent developments in computers and algorithms. To provide a publicly available repository of complete phylomes that allows researchers to access and store large-scale phylogenomic analyses, we have developed PhylomeDB. PhylomeDB is a database of complete phylomes derived for different genomes within a specific taxonomic range. All phylomes in the database are built using a high-quality phylogenetic pipeline that includes evolutionary model testing and alignment trimming phases. For each genome, PhylomeDB provides the alignments, phylogentic trees and tree-based orthology predictions for every single encoded protein. The current version of PhylomeDB includes the phylomes of Human, the yeast Saccharomyces cerevisiae and the bacterium Escherichia coli, comprising a total of 32 289 seed sequences with their corresponding alignments and 172 324 phylogenetic trees. PhylomeDB can be publicly accessed at http://phylomedb.bioinfo.cipf.e

    PhylomeDB v3.0: an expanding repository of genome-wide collections of trees, alignments and phylogeny-based orthology and paralogy predictions

    Get PDF
    The growing availability of complete genomic sequences from diverse species has brought about the need to scale up phylogenomic analyses, including the reconstruction of large collections of phylogenetic trees. Here, we present the third version of PhylomeDB (http://phylomeDB.org), a public database for genome-wide collections of gene phylogenies (phylomes). Currently, PhylomeDB is the largest phylogenetic repository and hosts 17 phylomes, comprising 416 093 trees and 165 840 alignments. It is also a major source for phylogeny-based orthology and paralogy predictions, covering about 5 million proteins in 717 fully-sequenced genomes. For each protein-coding gene in a seed genome, the database provides original and processed alignments, phylogenetic trees derived from various methods and phylogeny-based predictions of orthology and paralogy relationships. The new version of phylomeDB has been extended with novel data access and visualization features, including the possibility of programmatic access. Available seed species include model organisms such as human, yeast, Escherichia coli or Arabidopsis thaliana, but also alternative model species such as the human pathogen Candida albicans, or the pea aphid Acyrtosiphon pisum. Finally, PhylomeDB is currently being used by several genome sequencing projects that couple the genome annotation process with the reconstruction of the corresponding phylome, a strategy that provides relevant evolutionary insights

    Palaeogenomic insights into the origins of French grapevine diversity

    Get PDF
    Ramos-Madrigal, Jazmín, Runge, Anne Kathrine Wiborg, Bouby, Laurent, Lacombe, Thierry, Castruita, José Alfredo Samaniego, Adam-Blondon, Anne-Françoise, Figueiral, Isabel, Hallavant, Charlotte, Martínez-Zapater, José M., Schaal, Caroline, Töpfer, Reinhard, Petersen, Bent, Sicheritz-Pontén, Thomas, This, Patrice, Bacilieri, Roberto, Gilbert, M. Thomas P., Wales, Nathan (2019): Palaeogenomic insights into the origins of French grapevine diversity. Nature Plants 5: 595-603, DOI: 10.1038/s41477-019-0437-

    TreeKO: a duplication-aware algorithm for the comparison of phylogenetic trees

    Get PDF
    Comparisons of tree topologies provide relevant information in evolutionary studies. Most existing methods share the drawback of requiring a complete and exact mapping of terminal nodes between the compared trees. This severely limits the scope of genome-wide analyses, since trees containing duplications are pruned arbitrarily or discarded. To overcome this, we have developed treeKO, an algorithm that enables the comparison of tree topologies, even in the presence of duplication and loss events. To do so treeKO recursively splits gene trees into pruned trees containing only orthologs to subsequently compute a distance based on the combined analyses of all pruned tree comparisons. In addition treeKO, implements the possibility of computing phylome support values, and reconciliation-based measures such as the number of inferred duplication and loss events

    Dense sampling of bird diversity increases power of comparative genomics

    Get PDF
    © 2020, The Author(s). Whole-genome sequencing projects are increasingly populating the tree of life and characterizing biodiversity1–4. Sparse taxon sampling has previously been proposed to confound phylogenetic inference5, and captures only a fraction of the genomic diversity. Here we report a substantial step towards the dense representation of avian phylogenetic and molecular diversity, by analysing 363 genomes from 92.4% of bird families—including 267 newly sequenced genomes produced for phase II of the Bird 10,000 Genomes (B10K) Project. We use this comparative genome dataset in combination with a pipeline that leverages a reference-free whole-genome alignment to identify orthologous regions in greater numbers than has previously been possible and to recognize genomic novelties in particular bird lineages. The densely sampled alignment provides a single-base-pair map of selection, has more than doubled the fraction of bases that are confidently predicted to be under conservation and reveals extensive patterns of weak selection in predominantly non-coding DNA. Our results demonstrate that increasing the diversity of genomes used in comparative studies can reveal more shared and lineage-specific variation, and improve the investigation of genomic characteristics. We anticipate that this genomic resource will offer new perspectives on evolutionary processes in cross-species comparative analyses and assist in efforts to conserve species

    A draft genome sequence of the elusive giant squid, Architeuthis dux

    Get PDF
    Background: The giant squid (Architeuthis dux; Steenstrup, 1857) is an enigmatic giant mollusc with a circumglobal distribution in the deep ocean, except in the high Arctic and Antarctic waters. The elusiveness of the species makes it difficult to study. Thus, having a genome assembled for this deep-sea-dwelling species will allow several pending evolutionary questions to be unlocked. Findings: We present a draft genome assembly that includes 200 Gb of Illumina reads, 4 Gb of Moleculo synthetic long reads, and 108 Gb of Chicago libraries, with a final size matching the estimated genome size of 2.7 Gb, and a scaffold N50 of 4.8 Mb. We also present an alternative assembly including 27 Gb raw reads generated using the Pacific Biosciences platform. In addition, we sequenced the proteome of the same individual and RNA from 3 different tissue types from 3 other species of squid (Onychoteuthis banksii, Dosidicus gigas, and Sthenoteuthis oualaniensis) to assist genome annotation. We annotated 33,406 protein-coding genes supported by evidence, and the genome completeness estimated by BUSCO reached 92%. Repetitive regions cover 49.17% of the genome. Conclusions: This annotated draft genome of A. dux provides a critical resource to investigate the unique traits of this species, including its gigantism and key adaptations to deep-sea environments
    corecore