37 research outputs found

    The Nature of Eddy Kinetic Energy in the Labrador Sea: Different Types of Mesoscale Eddies, their Temporal Variability and Impact on Deep Convection

    Get PDF
    Oceanic eddies are an important component in preconditioning the central Labrador Sea (LS) for deep convection and in restratifying the convected water. This study investigates the different sources and impacts of Eddy Kinetic Energy (EKE) and its temporal variability in the LS with the help of a 52-year long hindcast simulation of a 1/20° ocean model. Irminger Rings (IR) are generated in the West Greenland Current (WGC) between 60 and 62°N, mainly affect preconditioning and limit the northward extent of the convection area. The IR exhibit a seasonal cycle and decadal variations linked to the WGC strength, varying with the circulation of the subpolar gyre. The mean and temporal variations of IR generation can be attributed to changes in deep ocean baroclinic and upper ocean barotropic instabilities at comparable magnitudes. The main source of EKE and restratification in the central LS are Convective Eddies (CE). They are generated by baroclinic instabilities near the bottom of the mixed layer during and after convection. The CE have a mid-depth core and reflect the hydrographic properties of the convected water mass with a distinct minimum in potential vorticity. Their seasonal to decadal variability is tightly connected to the local atmospheric forcing and the associated air-sea heat fluxes. A third class of eddies in the LS are the Boundary Current Eddies shed from the Labrador Current (LC). Since they are mostly confined to the vicinity of the LC, these eddies appear to exert only minor influence on preconditioning and restratification

    The Nature and Variability of Eddy Kinetic Energy in an Ocean General Circulation Model With a Focus on the South Pacific Subtropical Gyre and the Labrador Sea

    Get PDF
    This thesis focuses on the nature of oceanic Eddy Kinetic Energy (EKE), its generation and temporal variability. An Ocean General Circulation Model (OGCM) based on the NEMO code builds the foundation for these investigations. For a first case study, several simulations of a 1/4° configuration are used to investigate the temporal variability of EKE in the South Pacific Subtropical Countercurrent (STCC). Decadal changes in wind stress curl associated with the Interdecadal Pacific Oscillation (IPO) lead to up- and downwelling in the STCC, influencing the meridional density gradient and thereby STCC strength, baroclinic instability and the resulting EKE. An additional 30 to 40% of the local density anomalies can be explained by long baroclinic Rossby waves propagating into the region, modulating the decadal signal of the IPO’s influence in the STCC on interannual time scales. In a second case study, the model’s horizontal resolution is regionally increased to 1/20° in the North Atlantic to investigate different types of mesoscale eddies in the Labrador Sea. On decadal time scales, the temporal variability of EKE in the LS is driven by the large-scale atmospheric circulation. In the case of Convective Eddies (CE), local winter heat loss leads to deep convection, a baroclinically unstable rim-current is established along the edge of the convection area and generates EKE at mid-depth. The variations of EKE associated with the surface intensified Irminger Rings (IR) and Boundary Current Eddies are driven by the large-scale changes of the currents of the subpolar gyre. While IR play a vital role in stratifying large parts of the LS and thus suppressing deep convection, CE are the major driver of rapid restratification during and after deep convection

    Temporal Variability of Oceanic Eddy Kinetic Energy: A High Resolution Model Analysis

    Get PDF
    Mesoscale variability of velocities is an important part of the global ocean circulation, as it contains more kinetic energy than the mean flow over most of the ocean. Understanding its generation, dissipation and modulation processes therefore is crucial to better understand ocean circulation in general. In this thesis, a global 1/12◦ ocean model (ORCA12) is used to study the distribution of mean surface Eddy Kinetic Energy (EKE), its seasonal cycle and possible driving mechanisms, averaged over 26 years (1981-2007). For the calculation of EKE, the deviations from yearly mean horizontal velocities u, v are found to be best suitable. The model is then evaluated using EKE derived from satellite altimetry (AVISO). The total EKE from the model, including geostrophic parts, realistically reproduces the observed geostrophic mean EKE and its seasonal cycle. Seasonal cycles of surface EKE in the subtropical gyres, including most of the Western Boundary Currents (WBCs), peak in the summer months in both hemispheres. The mean EKE and amplitudes of the annual cycle are generally larger in the Pacific, compared to the Atlantic. The seasonal variations of EKE in the WBCs are driven by dissipation processes at the sea surface, namely the wind stress and thermal interactions with the atmosphere in winter. Only in the core regions of the currents other processes play a role as the surface EKE there peaks in winter/spring, not consistent with the dissipation hypothesis. The balance of dissipation and generation terms in the strong, chaotic WBCs, however, varies from year to year. In the subtropical gyres’ interior, dissipation is not solely responsible for the annual cycle. Instead, the vertical shear of near-surface horizontal velocities is found to peak in summer, in phase with the EKE. This seasonal cycle of the shear can be observed down to ∼ 150m depth, depending on the region. Inspections of profiles of horizontal velocity and EKE reveal the vertical shear to be associated with the velocity differences between the Mixed Layer and the interior ocean, possibly leading to instabilities which locally generate surface intensified EKE, largest in summer. Therefore, the seasonal cycle of near-surface vertical shear of horizontal velocities seems to be responsible for the seasonal variations of surface EKE, although the general source of EKE in the subtropical gyres remains unclear

    Decadal variability of Eddy Kinetic Energy in the South Pacific Subtropical Countercurrent in an Ocean General Circulation Model

    Get PDF
    The Eddy Kinetic Energy (EKE) associated with the Subtropical Countercurrent (STCC) in the western subtropical South Pacific is known to exhibit substantial seasonal and decadal variability. Using an eddy-permitting ocean general circulation model, which is able to reproduce the observed, salient features of the seasonal cycles of shear, stratification, baroclinic production and the associated EKE, we investigate the decadal changes of EKE. We show that the STCC region exhibits, uniquely among the subtropical gyres of the world’s oceans, significant, atmospherically forced, decadal EKE variability. The decadal variations are driven by changing vertical shear between the STCC in the upper 300 m and the South Equatorial Current below, predominantly caused by variations in STCC strength associated with a changing meridional density gradient. In the 1970s, an increased meridional density gradient results in EKE twice as large as in later decades in the model. Utilizing sensitivity experiments, decadal variations in the wind field are shown to be the essential driver. Local wind stress curl anomalies associated with the Interdecadal Pacific Oscillation (IPO) lead to up- and downwelling of the thermocline, inducing strengthening or weakening of the STCC and the associated EKE. Additionally, remote wind stress curl anomalies in the eastern subtropical South Pacific, which are not related to the IPO, generate density anomalies that propagate westward as Rossby waves and can account for up to 30–40 % of the density anomalies in the investigated region

    The INALT family – a set of high-resolution nests for the Agulhas Current system within global NEMO ocean/sea-ice configurations

    Get PDF
    The Agulhas Current, the western boundary current of the South Indian Ocean, has been shown to play an important role in the connectivity between the Indian and Atlantic oceans. The greater Agulhas Current system is highly dominated by mesoscale dynamics. To investigate their influence on the regional and global circulations, a family of high-resolution ocean general circulation model configurations based on the NEMO code has been developed. Horizontal resolution refinement is achieved by embedding “nests” covering the South Atlantic and the western Indian oceans at 1/10∘ (INALT10) and 1/20∘ (INALT20) within global hosts with coarser resolutions. Nests and hosts are connected through two-way interaction, allowing the nests not only to receive boundary conditions from their respective host but also to feed back the impact of regional dynamics onto the global ocean. A double-nested configuration at 1/60∘ resolution (INALT60) has been developed to gain insights into submesoscale processes within the Agulhas Current system. Large-scale measures such as the Drake Passage transport and the strength of the Atlantic meridional overturning circulation are rather robust among the different configurations, indicating the important role of the hosts in providing a consistent embedment of the regionally refined grids into the global circulation. The dynamics of the Agulhas Current system strongly depend on the representation of mesoscale processes. Both the southward-flowing Agulhas Current and the northward-flowing Agulhas Undercurrent increase in strength with increasing resolution towards more realistic values, which suggests the importance of improving mesoscale dynamics as well as bathymetric slopes along this narrow western boundary current regime. The exploration of numerical choices such as lateral boundary conditions and details of the implementation of surface wind stress forcing demonstrates the range of solutions within any given configuration

    Evaluation of global ocean–sea-ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2)

    Get PDF
    We present a new framework for global ocean- sea-ice model simulations based on phase 2 of the Ocean Model Intercomparison Project (OMIP-2), making use of the surface dataset based on the Japanese 55-year atmospheric reanalysis for driving ocean-sea-ice models (JRA55-do).We motivate the use of OMIP-2 over the framework for the first phase of OMIP (OMIP-1), previously referred to as the Coordinated Ocean-ice Reference Experiments (COREs), via the evaluation of OMIP-1 and OMIP-2 simulations from 11 state-of-the-science global ocean-sea-ice models. In the present evaluation, multi-model ensemble means and spreads are calculated separately for the OMIP-1 and OMIP-2 simulations and overall performance is assessed considering metrics commonly used by ocean modelers. Both OMIP-1 and OMIP-2 multi-model ensemble ranges capture observations in more than 80% of the time and region for most metrics, with the multi-model ensemble spread greatly exceeding the difference between the means of the two datasets. Many features, including some climatologically relevant ocean circulation indices, are very similar between OMIP-1 and OMIP- 2 simulations, and yet we could also identify key qualitative improvements in transitioning from OMIP-1 to OMIP- 2. For example, the sea surface temperatures of the OMIP- 2 simulations reproduce the observed global warming during the 1980s and 1990s, as well as the warming slowdown in the 2000s and the more recent accelerated warming, which were absent in OMIP-1, noting that the last feature is part of the design of OMIP-2 because OMIP-1 forcing stopped in 2009. A negative bias in the sea-ice concentration in summer of both hemispheres in OMIP-1 is significantly reduced in OMIP-2. The overall reproducibility of both seasonal and interannual variations in sea surface temperature and sea surface height (dynamic sea level) is improved in OMIP-2. These improvements represent a new capability of the OMIP-2 framework for evaluating processlevel responses using simulation results. Regarding the sensitivity of individual models to the change in forcing, the models show well-ordered responses for the metrics that are directly forced, while they show less organized responses for those that require complex model adjustments. Many of the remaining common model biases may be attributed either to errors in representing important processes in ocean-sea-ice models, some of which are expected to be reduced by using finer horizontal and/or vertical resolutions, or to shared biases and limitations in the atmospheric forcing. In particular, further efforts are warranted to resolve remaining issues in OMIP-2 such as the warm bias in the upper layer, the mismatch between the observed and simulated variability of heat content and thermosteric sea level before 1990s, and the erroneous representation of deep and bottom water formations and circulations. We suggest that such problems can be resolved through collaboration between those developing models (including parameterizations) and forcing datasets. Overall, the present assessment justifies our recommendation that future model development and analysis studies use the OMIP-2 framework

    Evaluation of global ocean–sea-ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2)

    Get PDF
    We present a new framework for global ocean–sea-ice model simulations based on phase 2 of the Ocean Model Intercomparison Project (OMIP-2), making use of the surface dataset based on the Japanese 55-year atmospheric reanalysis for driving ocean–sea-ice models (JRA55-do). We motivate the use of OMIP-2 over the framework for the first phase of OMIP (OMIP-1), previously referred to as the Coordinated Ocean–ice Reference Experiments (COREs), via the evaluation of OMIP-1 and OMIP-2 simulations from 11 state-of-the-science global ocean–sea-ice models. In the present evaluation, multi-model ensemble means and spreads are calculated separately for the OMIP-1 and OMIP-2 simulations and overall performance is assessed considering metrics commonly used by ocean modelers. Both OMIP-1 and OMIP-2 multi-model ensemble ranges capture observations in more than 80 % of the time and region for most metrics, with the multi-model ensemble spread greatly exceeding the difference between the means of the two datasets. Many features, including some climatologically relevant ocean circulation indices, are very similar between OMIP-1 and OMIP-2 simulations, and yet we could also identify key qualitative improvements in transitioning from OMIP-1 to OMIP-2. For example, the sea surface temperatures of the OMIP-2 simulations reproduce the observed global warming during the 1980s and 1990s, as well as the warming slowdown in the 2000s and the more recent accelerated warming, which were absent in OMIP-1, noting that the last feature is part of the design of OMIP-2 because OMIP-1 forcing stopped in 2009. A negative bias in the sea-ice concentration in summer of both hemispheres in OMIP-1 is significantly reduced in OMIP-2. The overall reproducibility of both seasonal and interannual variations in sea surface temperature and sea surface height (dynamic sea level) is improved in OMIP-2. These improvements represent a new capability of the OMIP-2 framework for evaluating process-level responses using simulation results. Regarding the sensitivity of individual models to the change in forcing, the models show well-ordered responses for the metrics that are directly forced, while they show less organized responses for those that require complex model adjustments. Many of the remaining common model biases may be attributed either to errors in representing important processes in ocean–sea-ice models, some of which are expected to be reduced by using finer horizontal and/or vertical resolutions, or to shared biases and limitations in the atmospheric forcing. In particular, further efforts are warranted to resolve remaining issues in OMIP-2 such as the warm bias in the upper layer, the mismatch between the observed and simulated variability of heat content and thermosteric sea level before 1990s, and the erroneous representation of deep and bottom water formations and circulations. We suggest that such problems can be resolved through collaboration between those developing models (including parameterizations) and forcing datasets. Overall, the present assessment justifies our recommendation that future model development and analysis studies use the OMIP-2 framework.This research has been supported by the Integrated Research Program for Advancing Climate Models (TOUGOU) of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan (grant nos. JPMXD0717935457 and JPMXD0717935561), the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) (grant no. 274762653), the Helmholtz Climate Initiative REKLIM (Regional Climate Change) and European Union's Horizon 2020 Research & Innovation program (grant nos. 727862 and 800154), the Research Council of Norway (EVA (grant no. 229771) and INES (grant no. 270061)), the US National Science Foundation (NSF) (grant no. 1852977), the National Natural Science Foundation of China (grant nos. 41931183 and 41976026), NOAA's Science Collaboration Program and administered by UCAR's Cooperative Programs for the Advancement of Earth System Science (CPAESS) (grant nos. NA16NWS4620043 and NA18NWS4620043B), and NOAA (grant no. NA18OAR4320123).Peer ReviewedPostprint (published version

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF
    corecore