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Abstract

Mesoscale variability of velocities is an important part of the global ocean circulation, as

it contains more kinetic energy than the mean flow over most of the ocean. Understanding

its generation, dissipation and modulation processes therefore is crucial to better under-

stand ocean circulation in general. In this thesis, a global 1/12◦ ocean model (ORCA12)

is used to study the distribution of mean surface Eddy Kinetic Energy (EKE), its sea-

sonal cycle and possible driving mechanisms, averaged over 26 years (1981-2007). For the

calculation of EKE, the deviations from yearly mean horizontal velocities u, v are found

to be best suitable. The model is then evaluated using EKE derived from satellite altime-

try (AVISO). The total EKE from the model, including ageostrophic parts, realistically

reproduces the observed geostrophic mean EKE and its seasonal cycle. Seasonal cycles of

surface EKE in the subtropical gyres, including most of the Western Boundary Currents

(WBCs), peak in the summer months in both hemispheres. The mean EKE and ampli-

tudes of the annual cycle are generally larger in the Pacific, compared to the Atlantic.

The seasonal variations of EKE in the WBCs are driven by dissipation processes at the

sea surface, namely the wind stress and thermal interactions with the atmosphere in win-

ter. Only in the core regions of the currents other processes play a role as the surface

EKE there peaks in winter/spring, not consistent with the dissipation hypothesis. The

balance of dissipation and generation terms in the strong, chaotic WBCs, however, varies

from year to year. In the subtropical gyres’ interior, dissipation is not solely responsible

for the annual cycle. Instead, the vertical shear of near-surface horizontal velocities is

found to peak in summer, in phase with the EKE. This seasonal cycle of the shear can

be observed down to ∼ 150m depth, depending on the region. Inspections of profiles of

horizontal velocity and EKE reveal the vertical shear to be associated with the velocity

differences between the Mixed Layer and the interior ocean, possibly leading to instabil-

ities which locally generate surface intensified EKE, largest in summer. Therefore, the

seasonal cycle of near-surface vertical shear of horizontal velocities seems to be respon-

sible for the seasonal variations of surface EKE, although the general source of EKE in

the subtropical gyres remains unclear.
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Zusammenfassung

Die mesoskalige Variabilität ist ein wichtiger Teil der Ozeanzirkulation. In vielen Regio-

nen enthält sie mehr kinetische Energie als die mittleren Strömungen. Um ein besseres

Verständnis der Strömungen zu erlangen ist es daher unerlässlich die Entstehung, Vernich-

tung und Veränderungen der mesoskaligen Variabilität zu verstehen. In dieser Arbeit wird

ein globales 1/12◦ Ozeanmodell (ORCA12) benutzt um die räumliche Verteilung der über

26 Jahre (1981-2007) gemittelten, oberflächennahen kinetischen Wirbelenergie (EKE),

ihren Jahresgang und mögliche Ursachen zu untersuchen. Zur Berechnung der EKE

eignen sich Abweichungen von jährlich gemittelten Geschwindigkeiten u, v am Besten.

Mit Hilfe von EKE aus Satellitenaltimetrie (AVISO) wird dann die Leistung des Modells

getestet. Die EKE, inklusive ageostrophischer Anteile, aus dem Modell kann die EKE

und ihren Jahresgang der beobachteten geostrophischen EKE realistisch widergeben. Die

Jahresgänge der EKE in den subtropischen Wirbeln und großen Teilen der westlichen

Randströme (WBCs) haben ihr Maximum im Sommer. Die mittlere EKE und die Am-

plituden der Jahresgänge im Pazifik sind größer als die im Atlantik. Die saisonalen

Veränderungen der EKE in den WBCs, mit Ausnahme der Kernregionen, wird durch

Vernichtungsprozesse an der Meeresoberfläche verursacht; zu nennen sind hier die Wind-

schubspannung und thermische Wechselwirkungen mit der Atmosphäre im Winter. Die

Balance zwischen Vernichtung und Entstehung in den intensiven WBCs variiert aber stark

von Jahr zu Jahr. Im Inneren der subtropischen Wirbel sind die Vernichtungsprozesse

nicht alleinig verantwortlich für den beobachteten Jahresgang. Stattdessen zeigt die

mittlere vertikale Scherung der horizontalen Geschwindigkeiten der oberen ∼ 150m,

je nach Region, ein deutliches Maximum im Sommer, analog zur EKE. Vertikale Pro-

file der horizontalen Geschwindigkeiten und der EKE zeigen eine vertikale Scherung im

Zusammenhang mit Geschwindigkeitsunterschieden zwischen der Deckschicht und dem

tieferen Ozean. Diese Scherung kann möglicherweise zu Instabilitäten führen, die lokal

oberflächenintensivierte EKE generieren, besonders im Sommer. Daher ist es wahrschein-

lich, dass dieser Jahresgang der oberflächennahen Scherung für die saisonalen Schwankun-

gen der EKE an der Oberfläche verantwortlich ist. Eine allgemeine Quelle der EKE in

den subtropischen Wirbeln kann hiermit allerdings nicht nachgewiesen werden.
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1 Introduction

1.1 Observations of Eddy Kinetic Energy

In the early stages of physical oceanography, the currents in the ocean were mostly

described as a slow, laminar flow. Due to very sparse data in time and space, no more

precise representation could be achieved than this highly smeared, rather schematic one.

Up until the 1970s, apart from observations of meanders and large eddies associated

with the strongest currents, only suggestions about the existence of mesoscale variability

could be made (Robinson, 1983). C. O’D. Iselin was the first to identify a strong eddy

north of the Gulf Stream in the 1930s (Iselin, 1936), when he evaluated temperature

and salinity measurements in order to derive the density of the water and associated

relative geostrophic currents. More and more evidence of a highly variable, narrow and

meandering Gulf Stream and also a deep countercurrent in the North Atlantic was found

during multiple surveys in the 1950s (Swallow, 1976). It was not until the 1970s though,

that the idea of eddies being present in all regions of the oceans became widely accepted.

Accompanying the advance of measurement techniques, an inhomogeneous distri-

bution of Eddy Kinetic Energy (EKE) in the world’s oceans was found. Wyrtki et al.

(1976) and Dantzler (1977) derived a basin-wide picture of mesoscale variability using

ship drift and XBT (Expendable Bathythermograph) data, respectively. One milestone

of the detection of highly energetic regions in the mesoscale was the 1970s Mid-Ocean Dy-

namics Experiment (MODE) which clearly pointed out the Western Boundary Currents

(WBCs) as a source for local and remote EKE (MODE Group, 1978). The mesoscale

variability was defined to be in the order of tens to hundreds of kilometers on the spatial

scale and weeks to months on the temporal (Stammer and Böning, 1996). The kinetic

energy at these scales was found to be stronger than the Mean Kinetic Energy (MKE,

the kinetic energy of the mean flow) by an order of magnitude or more (Xu et al., 2011).

Various forms of mesoscale variability have been studied: Meandering and filamenting of

strong currents that occasionally lead to partial or total shedding of ring currents, plan-

etary and topographic waves, different forms of vortices (surface- or depth-intensified,

barotropic) etc. (Robinson, 1983). The importance of eddies for heat and momentum
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fluxes and their impact on the whole climate system has then also been acknowledged.

The wide use of satellite altimetry data of the Sea Surface Height (SSH) and as-

sociated geostrophic currents was a further major improvement to the understanding of

the surface EKE distribution in the world’s oceans. Particularly the parts with a lower

variability level could then be better resolved. For the first time basin-wide, synoptic

maps with a high temporal resolution were created with the Seasat altimetry mission

(Fu, 1983), even though it only operated for little more than three months. Today, much

longer timeseries are available with the ERS-1 and -2 missions having a combined oper-

ating time from 1991 to 2011 and TOPEX/Poseidon operating from 1992 to 2006. First

global statistics of mesoscale variability were calculated from these missions in the early

nineties (Le Traon and Morrow, 2001) but a high spatial resolution with low background

noise level was not achieved until TOPEX/Poseidon and ERS-1/-2 data were combined

(Ducet et al., 2000). This combination showed more accurate maxima and many details

in the low energy regimes. Jason-1 (2001-2013) and Envisat (2002-2012) data are also

available and one of the advantages of at least two satellites being spaceborne simul-

taneously is the possibility of combining the resulting altimetry data. Nowadays, high

resolution altimetry data from 1992 on are available without gaps and with low noise

level. Currently Jason-2 (since 2008) and Cryosat-2 (since 2010) are in orbit (AVISO,

2014). The mean surface EKE derived by satellite altimetry shows maxima of over

4500cm2s−2, whereas about 70% of the oceans have a mean EKE of less than 300cm2s−2

(Scharffenberg and Stammer, 2010; Xu et al., 2011). The regions with highest mesoscale

variability are the WBCs, especially the Gulf Stream (GS) and Kuroshio/Oyashio Exten-

sion systems, and the Agulhas Retroflection, with EKE values higher than 2000cm2s−2.

Also notable are the Northwest Indian Ocean (Great Whirl) and the Gulf of Mexico

with EKE > 1000cm2s−2 as well as the Antarctic Circumpolar Current (ACC) and the

equatorial regions of all oceans with EKE above 300cm2s−2. The remaining parts of the

oceans show EKE < 300cm2s−2 with minima in the polar oceans and the interior South

Atlantic and North Pacific (EKE < 30cm2s−2).
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1.2 Eddy Kinetic Energy in Numerical Models

Simultaneously to the systematic observations of oceanic variability in the 1970s, first

attempts of assessing the role of eddies in the ocean with numerical models were made.

The developed models had a resolution of less than 100km in the horizontal. Although

these studies were carried out in idealized basins, mostly located in the mid-latitudes, first

promising results could be obtained (Holland et al., 1983). The strong jets and currents

in these simulations produced baroclinic and barotropic instabilities, generating an eddy

field which also radiated energy into more distant regions of the basins (Holland and Lin,

1975; Robinson et al., 1977). With grid resolutions in the order of a few tens of kilometers

and eddy sizes of a few hundred kilometers in the modelled regions, the full cycle from

eddy generation to dissipation could be simulated. Starting with the potential energy of

the mean flow feeding energy into the mesoscale, to the dissipation of this energy, mostly

by bottom friction (Semtner and Mintz, 1977). In the 1980s, Cox (1985) first integrated

an eddy-resolving numerical model for a realistically dimensioned ocean basin. Although

this basin was still idealised, it was a major contribution to the simulation of eddy-

resolving wind- and thermohaline-driven numerical models. The deficiencies of this and

other models of that time were then met in the 1990s with models of increasing resolution

and more realistic topography and horizontal boundaries (Stammer and Böning, 1996).

In the late 1990s and early 2000s, global numerical ocean models with 40-50 vertical levels

and 8-10km horizontal resolution were in wide use. Smith et al. (2000), for the first time

reported an accurate agreement of simulated and observed EKE from satellite altimetry

in their Parallel Ocean Program (POP) 1/10◦ ocean general circulation model. Apart

from the increasing resolution many other features have been improved. The numerical

implementation, parametrization of the sub-grid scale processes as well as the surface

forcing and topography products being some of them (Maltrud and McClean, 2005).

1.3 Sources, Sinks and Variability of Eddy Kinetic Energy

With a constantly improving view of the global ocean’s EKE developing, the question

of generation and dissipation processes arose. In general, oceanic variability can be seen
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as a direct or indirect response to local or remote atmospheric forcing (Stammer and

Wunsch, 1999). The direct response manifests itself in variability caused by wind stress

and buoyancy forcing, while there are different mechanisms for the indirect response.

Gradients in current velocities lead to dynamically unstable processes depending on the

strength of the gradient. The flow of currents over topographic features and meandering

of strong currents are other major sources for mesoscale variability in the ocean. Even

though it is not a difficult task to generally point out the sources for EKE in the ocean,

up to date there is no reliable theory of local eddy energy generation and dissipation

(Xu et al., 2011). In the WBCs and other strong currents, the local maxima in EKE

can be easily explained by the meandering and sharp gradients in velocity, thus high

baroclinic and barotropic instability. The interior of the mid-latitude oceans, however,

does not show these instability processes on a large scale, nevertheless eddy energy in the

mesoscale is present. Different possibilities concerning the sources for this variability have

been investigated. The first theory focusses on baroclinic instability, which is clearly the

source in western boundary currents. The energy generated in these currents was believed

to radiate towards the ocean’s interior. This theory, however, has been proven to be

insufficient to explain the observed spectrum of EKE in these remote regions (Stammer

et al., 2001). The second theory proposes the EKE in the mid-oceans to be generated

locally by fluctuating winds. It was shown though, that eddy energy generated directly

by wind stress is the source for barotropic currents and Rossby waves and cannot explain

the full spectrum of energy found. Nevertheless, direct mechanical forcing from the

atmosphere is mostly responsible for EKE in the deep ocean (Willebrand et al., 1980;

Fukumori et al., 1998). The contribution of direct wind forcing to the local surface EKE

fields seems to be of minor importance, except for in a few regions with very low energy

levels (Stammer, 1997).

One way to attribute some sources to the EKE observed in the ocean, is the study

of its temporal variability. A seasonal cycle or interannual changes in the source of EKE

(be it baroclinic instability/current velocity or atmospheric forcing like wind) should

manifest themselves in a seasonal cycle or interannual changes in the observed EKE. The

first study to point out a seasonality in EKE was by Dickson et al. (1982), who found
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a winter maximum of near-surface EKE at various sites in the eastern North Atlantic.

Varying wind stress was suggested as a source. Using satellite altimetry, Stammer and

Wunsch (1999) mapped the seasonal cycle of surface EKE (its amplitude and phase)

for the whole globe. They found widely distributed winter and spring maxima in the

eastern North Atlantic and Pacific and along the North Equatorial Currents, while the

western subtropical gyres and North Equatorial Counter Currents (NECC) show maxima

in EKE in summer and fall. Investigations of interannual changes in surface EKE are

much more limited due to the lack of long-term observations with the required spatial

coverage and the computational effort of long model runs with the necessary resolution of

the grid. In most cases, interannual changes in observed surface EKE are associated with

shifting positions of the currents that generate the EKE through instabilities (Hakinen

and Rhines, 2009; White and Heywood, 1995; Volkov, 2005). Brachet et al. (2004) find

interannual changes of EKE derived from satellite altimetry to be often associated with

drifts in wind stress fields but Stammer and Wunsch (1999) point out that EKE from

moorings generally shows no significant interannual variations. Thus, an investigation of

the seasonal cycle of surface EKE appears more promising to deliver significant results.

The aim of this study is to evaluate the seasonal cycle of surface EKE in greater

detail using a global ocean general circulation model. The model’s performance in sim-

ulating EKE at a global and regional level is tested against observational EKE from

satellite altimetry. Furthermore, the seasonal cycle of EKE is investigated and several

mechanisms possibly responsible for the variability on a seasonal scale are tested in a few

selected regions of the world oceans. The regions are chosen based on model data that

is validated with satellite altimetry. The six regions are: The Gulf Stream and Kuroshio

regions, adjacent regions in the western northern hemisphere subtropical gyres and their

southern hemisphere counterparts.

The Gulf Stream System (GS) has been studied most extensively of all current

systems and therefore provides a good comparison to other studies. One of the first

investigations of the near-surface EKE in the GS was carried out by Richardson (1983)

with satellite-tracked drifting buoys. He found a maximum mean EKE levels of around
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3000cm2s−2 but no evidence of a seasonal cycle. Maximum mean surface EKE values

in the range 3000cm2s−2 to 5000cm2s−2 have been confirmed by later model (Smith

et al., 2000) and altimetry studies (Stammer and Wunsch, 1999; Brachet et al., 2004),

who also found a seasonal signal with minimum values in winter and a maximum in

late summer/early fall (August/September). Ducet and Le Traon (2001) and Zhai et al.

(2008), also using satellite altimetry, found the maximum of the seasonal cycle to be in

July. Zhai et al. (2008) found the summer surface EKE to be higher than winter values in

most of the North Atlantic, up to 30% in the GS region, and propose an annual minimum

in the eddy dissipation rate to be responsible. The distribution of surface EKE could also

be reconstructed using high-resolution numerical models. Smith et al. (2000) used a 1/10◦

model of the North Atlantic and got accurate EKE values but did not investigate any

temporal variability of EKE. It has also been shown that the seasonal cycle of surface

EKE in the GS exhibits strong interannual changes. Volkov (2005) states that these

changes are preceded by two years by extreme events of the North Atlantic Oscillation

(NAO).

The Kuroshio/Kuroshio Extension System is comparable to the GS in dynamics

and is thought to show similar characteristics of flow and EKE. A number of studies

based on satellite altimetry exist which agree upon maximum surface EKE values between

2000cm2s−2 and 5000cm2s−2 with maximum values in the western part and decreasing

EKE towards the east. The maximal eastward extend of high energy levels vary from

158◦E (Ducet and Le Traon, 2001) to 175◦W (Qiu, 2002). The maximum of the seasonal

cycle varies from May/June close to Japan’s coast and July/August in the Kuroshio

Extension (Adamec, 1998; Ducet and Le Traon, 2001; Stammer and Wunsch, 1999), being

highly variable in between different years. As for the GS, regional model studies succeed

in reproducing the mean EKE distribution (Hurlburt et al., 1996) but few investigations

have been carried out concerning the temporal variability, seasonal signals in particular.

In addition to these WBC regimes, the adjacent regions in the interior of the

subtropical gyres will be studied. The EKE in these regions is generally low, in the

order of 50cm2s−2 to 300cm2s−2 in the North Atlantic (NA) and North Pacific (NP), and

even lower in the southern hemisphere (SH) counterparts (Scharffenberg and Stammer,
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2010). Nevertheless, the interannual variability is not as large as in the highly energetic

regions and thus the probability to find a robust seasonal cycle is most likely higher.

Scharffenberg and Stammer (2010) and Zhai et al. (2008) found seasonal cycles with

maxima in the summer months in the subtropical regions adjacent to the WBCs in the

western NP and western NA.

For further comparison, especially regarding the identification of possible mecha-

nisms, similar regions in the SH will be studied as well. Especially in the subtropical

gyres, an investigation of the seasonal cycle and its sources is thought to also shed some

light onto the question of the source of EKE in these regions in general, which remains

highly debated to date (Xu et al., 2011).

Following this introduction, the data and model output are introduced in section 2.

The applied methods are described and discussed in section 3, with a special focus on the

calculation of EKE in section 3.2. In section 4 the results are presented, starting with the

assessment of the ORCA12 model on a global scale in section 4.1, followed by detailed

investigations of the mean EKE and seasonal variations of the WBCs and subtropical

gyres in sections 4.2 and 4.3, respectively. The discussion of possible mechanisms for the

observed seasonal cycle is placed in section 5, followed by a summary and conclusion in

section 6.

2 Data and Model Output

2.1 AVISO

The observational Sea Surface Height (SSH) data used in this study was obtained by satel-

lite altimetry and distributed by ”Archiving, Validation and Interpretation of Satellite

Oceanographic Data” (AVISO). The data used is extracted from the ”dataset-duacs-

dt-upd-global-merged-madt-h-daily” dataset found on ”http://opendap.aviso.oceanobs

.com/thredds/dodsC/” and produced by SSALTO/DUACS (SSALTO/DUACS, 2014)

with the help of the Centre National d’Etudes Spatiales (CNES). The dataset is a com-

bination of altimetry measurements from various satellites (TOPEX/ Poseidon, Jason-1,

ERS-1/2, Envisat) which use radar technique on different wavelengths to calculate the
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distance between each satellite and the sea surface by measuring the time it takes an

electromagnetic wave to travel from the satellite to the sea surface and back.

Several corrections have to be made to the travel times. First of all, the orbit of the

satellite has to be determined. This is achieved by GPS measurements in combination

with a ”Precise Orbit Ephemeris” (POE). This ephemeris is a table with accurate posi-

tions of astronomical bodies and also of satellites. The travel time of the electromagnetic

waves has to be corrected for the interaction with electrons in the ionosphere as well as

dry gases, water vapour and water in the lower atmospheric layers. After taking into ac-

count the influence of and the interaction with the atmosphere, there are still corrections

to be made concerning the influence of various tides and atmospheric pressure on the

SSH. The undulations of the oceans, but also the solid earth, through the gravitational

attraction of the sun and the moon are the most important tides. But also changes of SSH

due to variations of the rotational axis of the earth have to be considered. Furthermore

the reflectivity of the sea surface changes with different wave heights.

After completing the numerous corrections and undergoing a quality control pro-

cedure, the altimetry data is calibrated at crossing points of the different satellites tracks

and SSH is determined in relation to a reference height. To get an absolute SSH, a

mean dynamic topography is added. This mean dynamic topography is based on four

and a half years of gravimetric data from the Gravity Recovery and Climate Experiment

(GRACE) as well as 15 years of satellite altimetry and in-situ measurements from e.g.

drifting buoys. After this calibration the SSH data is interpolated onto a 1/4◦×1/4◦ grid

with a temporal resolution of one day. This study uses data spanning a time period from

01. January 1993 to 31. December 2007. For EKE calculations geostrophic horizontal

velocities u and v are used that are also distributed by AVISO. Near the equator, an

equatorial geostrophy approach to derive velocities from SSH is used by AVISO. As the

equatorial regions are not of any interest to this study this method is not described in

more detail and equatorial regions will be masked in global maps because the geostrophic

EKE of AVISO and the EKE of ORCA12 including the ageostrophic part cannot be

compared at the equator (cf. Fig. 3).

More information on AVISO SSH data and associated errors are found in Ducet
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et al. (2000), Le Traon et al. (1998) and SSALTO/DUACS (2011). For a general descrip-

tion of satellite altimetry and its performance in measuring the mesoscale variability in

the ocean see Le Traon and Morrow (2001).

2.2 ORCA12

The simulated data in this study are taken from the ORCA12 model configuration.

ORCA12 is based on the NEMO (Nucleus for European Modelling of the Ocean) code

(Madec, 2008). NEMO is a framework for various ocean models. The two important

models for this study are the engine for ocean dynamics and thermodynamics Océan

PArallélisé (OPA) (Madec et al., 1998) and the engine for sea-ice dynamics and ther-

modynamics Louvain-la-neuve Ice Model (LIM2) (Fichefet and Morales Maqueda, 1997).

OPA version 8 is the base for the ocean component of the NEMO code. The ORCA12

configuration uses a global, orthogonal, curvilinear, tripolar grid to avoid singularities

at the North Pole (Scheinert, 2014). The grid is a staggered Arakawa-C type grid; the

tracer points are located in the middle of each grid box while the velocity points U,V

and W are shifted eastward, northward and upward to the boundary of the grid cell,

respectively. In ORCA12 this grid has a nominal resolution of 1/12◦ in the horizontal

which is below the internal Rossby radius of deformation at the latitudes investigated

in this study. Therefore, it is able to represent the mesoscale variability. In the vertical

there are 46 levels with 6m layer thickness at the surface and about 250m in the deep

ocean. Partial bottom cells and advanced advection schemes are used (Barnier et al.,

2006).

The model run used in this study is ORCA12.L46-K001. It uses partial slip bound-

ary conditions (Scheinert et al., 2014) and an atmospheric forcing as described in Large

and Yeager (2004) and proposed by the Coordinated Ocean-Ice Reference Experiments

(CORE, Griffies et al. (2008)). The horizontal mixing coefficients, namely tracer dif-

fusivity At
h and momentum viscosity Am

h , are dependent on the horizontal grid scale.

At
h0 = 125m2s−1, Am

h0 = 1.25 × 1010m4s−2 are highest at the equator, decreasing to-

wards the poles. Vertical tracer diffusivity and momentum viscosity are implemented

through a Turbulent Kinetic Energy (TKE) model (Blanke and Delecluse, 1993; Gas-
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par et al., 1990) which modifies the background mixing coefficients At
v0 = 1.2× 10−5 and

Am
v0 = 1.2×10−4m2s−1. The TKE model does not penetrate below the Mixed Layer. Five

day mean zonal and meridional surface velocities from 01 Jan. 1981 to 31. Dec. 2007 are

used in this study for the calculation of EKE. For further investigation, monthly means

of wind stress τ , temperature and salinity (to derive potential density) and velocities (to

derive vertical shear) are used from the model output.

For investigations of EKE at 100m depth, a second model run (ORCA12.L46-

K004) was used due the lack of available data at this depth from the first run. K004

differs from K001 in some boundary conditions, e.g. a free-slip boundary condition, and

some salinity restoring terms but the distribution of EKE is not affected significantly in

the regions investigated here. The findings from the K004 run are therefore assumed to

be transferable to the main model run K001 (Fig. 2).

3 Methods

3.1 Sea Surface Height Variance

To calculate the Sea Surface Height variance, a global trend is removed from every time

series on the grid points. For every five day period a global mean sea level is calculated

to get the global trend over the whole time from 1 Jan. 1993 to 31 Dec. 2007 for AVISO

and 1 Jan. 1981 to 31 Dec. 2007 for ORCA12. This global trend is then subtracted from

every single time series. After removing the trend the SSH variance is caculated at every

grid point with respect to the 15-year mean.

σ2

SSH =
1

n

n
∑

i=1

(SSHi − SSH)2 (1)

where n denotes the number of five-daily SSH values. The procedure is the same for the

AVISO and ORCA12 data. For the AVISO data however, the daily interpolated values

are averaged over five day periods to be comparable to the model output.
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3.2 Eddy Kinetic Energy

The Eddy Kinetic Energy for the ORCA12 model output is calculated directly from the

meridional and zonal velocity outputs u and v. To be comparable to the AVISO altimetry

data, the geostrophic velocities have to be derived from gradients of SSH as follows:

ugeo = −(
g

f
)
∂SSH

∂y
(2)

vgeo = (
g

f
)
∂SSH

∂x
(3)

where g is the gravitational acceleration g ≈ 9.8m2s−2, varying with latitude, and ϕ is

the latitude. f = 2Ω sin(ϕ) is the Coriolis parameter with 2Ω = 1.458 × 10−4s−1, twice

the rotation rate of the earth.

To calculate EKE (equation (4)), first the mean zonal and meridional surface ve-

locities, u and v, respectively, are derived on a global scale. The period over which the

time mean is taken to derive anomalies is quite an interesting matter. Depending on

which processes and time scales are to be considered, different reference periods can be

chosen. Most studies choose to calculate EKE from anomalies u′ and v′ with respect

to a multi-year averaged u and v. Problems arising using this method can be seen in

figure 1. Interannual variations of the mean velocities are regarded as anomalies con-

tributing to the EKE (cf. Penduff et al. (2004)), although, by definition, the EKE is the

mesoscale variability of kinetic energy with time scales of weeks to months (Stammer and

Böning, 1996). This insufficiency can be overcome by taking annual mean u and v as

reference velocities. This leads to substantial differences of up to 400cm2s−2, for example

in the GS region. The interannual variations in this region are not observed to be subject

to substantial change though. This may be due to the fact that, especially in regions

with strong mean currents, the EKE resulting from instabilities in the current is closely

connected to the actual strength and velocity of the mean current.

Considering shorter time scales such as the annual cycle of EKE, the possible annual

cycle of the mean velocities u and v should be taken into account. There are several ways

this could be done. First, a mean annual cycle of u and v could be subtracted before
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Figure 1: Comparison of EKE calculated from deviations from yearly mean velocities (red
lines; solid: mean velocity U; dashed: EKE) and total mean (168 months) velocities (blue
lines). The black solid line shows the monthly mean U.

calculating EKE and second, the EKE could be calculated with respect to a seasonal

(three month) mean of u and v. Regarding the second method, care has to be taken

as large features of mesoscale variability might have time scales of a couple of months

and calculating EKE to a seasonal mean velocity could neglect a part of that variability.

However, the seasonal cycle of the mean flow in the midlatitudes only affects the calculated

EKE in its mean, not in the amplitude and phase of its seasonal cycle (Fig. 2). Therefore,

in this study a yearly mean u and v and its deviations u′ and v′ are used to calculate the

EKE:

EKE =
1

2
(u′2 + v′2) (4)

where u′ = u − u; v′ = v − v. This gives qualitatively similar results to the calculations

considering a seasonal mean and has the benefit of not neglecting any mesoscale variability

of relatively long time scales.

To derive the mean seasonal cycle of EKE for every grid point, all five day average

values that have the center of their time span in one specific month are averaged and

then, the months from all years are averaged. For example, for every year, all five day

mean EKE values centered in January (a five day mean from 29 Jan. to 2 Feb. will be
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Figure 3: Difference between EKE and only geostrophic EKE in ORCA12, units: cm2s−2.

For the regionally averaged seasonal cycles, first the monthly EKE is spatially

averaged over the region of interest. Then all values belonging to the same months are

averaged to get the seasonal cycle.

EKEreg
i = (

x
reg

2
∑

x=x
reg

1

y
reg

2
∑

y=y
reg

1

EKEi(x, y))/((x
reg
2

− xreg
1

)(yreg
2

− yreg
1

)) (8)

where xreg
1

and xreg
2

are the zonal and yreg
1

and yreg
2

the meridional limits of the region

of interest. For the interannual variability of EKE all values of one specific year are

averaged, resulting in a timeseries of EKE with yearly values.

Another crucial point to check, is the fact that modelled EKE will be compared to

EKE calculated from satellite altimetry SSH. While the AVISO based EKE only contains

mesoscale variability of the geostrophic velocities, the EKE from ORCA12 is based on

surface velocities that also contain ageostrophic components of the flow, such as iner-

tial and Ekman currents. To avoid this problem, most model-based studies of mesoscale

variability use velocity data from sub-surface regions (Stammer et al. (2001) use veloci-

ties from 91m depth for example) or calculate geostrophic currents from modelled SSH

(Brachet et al., 2004). However, in this study the total surface currents u and v are
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used, including the ageostrophic parts. Regarding the investigation of the seasonal cycle

of EKE and especially its causes this is probably an important issue, as many of the

proposed mechanisms and theories concerning the production and dissipation of EKE

are connected to the atmosphere (windwork and thermal capping for example). Hence,

the surface layer plays a crucial role.

In ORCA12, the ageostrophic part of the EKE is about 10cm2s−2 in major parts of

the world’s oceans (Fig. 3, geostrophic EKE is ∼ 10cm2s−2 smaller than total EKE). In

some key regions though, there are significant differences. First, in all subtropical ocean

basins the geostrophic EKE (EKEgeo) is actually ∼ 10cm2s−2 larger than the total EKE

near the tropics and second, all strong current systems (GS, Kuroshio, Agulhas Return

Current, ACC) show EKEgeo that is up to 100cm2s−2 smaller at the poleward side of

the current and 100cm2s−2 larger at the equatorward side. The reasons for this were

not investigated but an influence of inertial currents in the Mixed Layer on eddies in

these regions could play a role. Near the equator, the ageostrophic part of EKE is also

considerably large due to the limits imposed on geostrophic current calculation there.

Though there are substantial differences in the mean EKEgeo and total EKE, the
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Figure 4: Timeseries from Jan 1993 - Dec 2007 of monthly EKE averaged over the
Gulf Stream region (34N-43N, 44W-73W). Shown are the total ORCA12 EKE including
ageostrophic part (black), geostrophic ORCA12 EKE (blue) and geostrophic AVISO EKE
(green), units: cm2s−2.
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temporal variability is not influenced. In figure 4 the time series of EKE in the GS

is shown, a region with large differences between EKEgeo and total EKE in the mean.

Nevertheless, the interannual and monthly variations of EKEgeo at this location follow

the variations of total EKE remarkably well.

4 Model Assessment and Results

The first step of this study is to validate the model output with satellite altimetry.

Furthermore, regions in the world’s oceans with a relatively high eddy activity and ho-

mogeneous spatial distribution of the phase of the seasonal cycle have to be identified.

With this selection of regions the consideration of only significant seasonal cycles can be

assured. To accomplish these tasks, global maps of SSH variance and EKE are evaluated

in section 4.1 before specific regions will be investigated in sections 4.2 and 4.3.

4.1 Global

4.1.1 Sea Surface Height Variance

One of the easiest and fastest ways to test oceanic variability is to inspect the variance of

SSH. On a global scale, the AVISO SSH variance is highest in regions of strong currents,

as expected (Fig. 5). Maximal values between 0.1m2 and 0.5m2 are reached in the Gulf

Stream/North Atlantic Current (NAC) and Kuroshio/Oyashio systems and in the Gulf of

Mexiko in the northern hemisphere (NH). In the southern hemisphere (SH) such high SSH

variance is found in the Agulhas retroflection and the Agulhas Return Current as well as

the East Autralian Current (EAC) and in the Brazil-Malvinas Confluence Zone. Much

of the Antarctic Circumpolar Current (ACC), Indian Ocean and Western and Equatorial

Pacific show a variance between 0.5 × 10−3m2 and 0.5 × 10−2m2 while the interior of

North and South Atlantic and Pacific and also the polar oceans of both hemispheres

show low SSH variances of the order 1 × 10−3m2 with minima found in the subtropical

South Atlantic (SA) and close to the Antarctic continent. Compared to previous studies

of global SSH variability, these results are similar (compare Ducet et al. (2000) Fig. 4

to Fig. 5 and 6 of this study, note that Ducet et al. (2000) show the square root of the
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variance and units are cm while in this study units are m2).

In ORCA12, the spatial pattern of SSH variance is in general agreement with the

AVISO data (Fig. 6), although the extrema are not as pronounced. While wide parts of

the Indian and Pacific Oceans exhibit a variance of 0.5 × 10−3m2 to 0.5 × 10−2m2 and

are very similar in AVISO and ORCA12, the maxima in WBCs are lower in ORCA12,

reaching only 0.2m2 to 0.3m2. Also the minima are not as extreme in ORCA12 with

lowest values in the order 0.3× 10−3m2, except for the SA.

The largest disagreement is found in the subpolar and polar oceans of the SH, south

of the ACC, where SSH variance in ORCA12 is about 10 times higher than in AVISO on

a large scale. With a horizontal resolution of 1/3◦ × 1/3◦, the AVISO grid is very likely

to be too coarse to resolve great parts of the mesoscale activity in the polar oceans. As

this region is not of any interest to this study though, this major difference is not being

investigated any closer.

Especially compared to previous global model studies of oceanic variability, the

realism of ORCA12 has to be emphasized. In contrast to Maltrud and McClean (2005)

for example, ORCA12 performs very well in regions like the Northwest Corner of the

NAC, the Agulhas Return Current and the pathway of the Agulhas Rings into the SA as

well as the eastern North Pacific and the Brazil-Malvinas-Confluence Zone in reproducing

the SSH variance observed by satellites.

4.1.2 Mean Eddy Kinetic Energy

The global distribution of mean surface EKE from AVISO (Fig. 7) resembles that of the

SSH variance, as the EKE is also closely connected to the strong current systems and the

associated instabilities. Maxima > 3000cm2s−2 are found along the GS, the Kuroshio and

the Agulhas Retroflection. Elevated EKE levels of ∼ 1000cm2s−2 exist in various regions

along the ACC, in the SH WBCs, such as the EAC, the NAC and along the equator in

all ocean basins, especially pronounced along the North Equatorial Counter Current in

the North Atlantic (NA). Regarding the geostrophic EKE near the equator, the inability
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of equations (2) and (3) to calculate geostrophic velocities has to be taken into account,

as the Coriolis parameter converges towards zero.

Over most of the interior of the subtropical oceans, values below 100cm2s−2 are

common, with local minima < 50cm2s−2 in the eastern parts of the subtropical gyres of

the NA and North Pacific (NP) and < 10cm2s−2 in their southern counterparts. In the

vicinity of current bands such as the Azores Current in the Atlantic and the North and

South Equatorial Currents of the Pacific, elevated EKE levels of up to 500cm2s−2 can be

observed. EKE in all subpolar and polar oceans is generally low with minima < 5cm2s−2.

The mean geostrophic EKE from 15 years of satellite altimetry is in good agreement with

previous studies. Scharffenberg and Stammer (2010) used 4 years of altimetry data (2002-

2005) and (Xu et al., 2011) used the same 15 years period (1993-2007) as this study, both

showing no major differences to the AVISO-based EKE calculated here.

Figure 8 shows the mean EKE from the ORCA12 model output. The model repro-

duces the spatial distribution realistically. Highest EKE, 1000cm2s−2 to over 3000cm2s−2,

is found in the GS, Kuroshio and Agulhas Retroflection. Larger differences can be found

in the Indian Ocean, where ORCA12 EKE is generally higher than the geostrophic AVISO

EKE. Additionally, values of 500cm2s−2 − 1000cm2s−2 can be found along the path of

the ACC, which is also higher than in the AVISO data. The local minima of AVISO

EKE are not as pronounced in the ORCA12 EKE, especially in the subpolar and polar

regions. The EKE in the eastern South Pacific (SP) however is lower than in the satellite

data with EKE < 10cm2s−2 being widespread.

Furthermore, the regions to be analysed in detail later are introduced in figure 8.

Two regions including the Gulf Stream system (GS; 34◦N−43◦N , 44◦W−73◦W ) and the

Kuroshio/Kuroshio Extension system (K; 33◦N−40◦N , 142◦E−170◦E) have been chosen

due to the high EKE levels there and to be compared to previous studies. The regions in

the subtropical gyres (North Pacific (NP; 20◦N − 35◦N , 160◦E− 190◦E), North Atlantic

(NA; 20◦N − 35◦N , 50◦W − 70◦W ), South Pacific (SP; 20◦S − 35◦S, 150◦W − 180◦W ),

South Atlantic (SA; 20◦S − 35◦S, 20◦W − 40◦W )) were chosen due to the significance of

the seasonal cycle (Fig. 10), described further in sections 4.1.3 and 4.1.4.
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4.1.3 Amplitude of the Seasonal Cycle of Eddy Kinetic Energy

The distribution of the amplitude of the EKE’s seasonal cycle in AVISO (Fig. 9) resembles

that of the mean EKE (Fig. 7). Areas with a high mean EKE also show the largest

amplitudes in the seasonal cycle. Consequently, amplitudes of ∼ 1000cm2s−2 are found

in the GS and Kuroshio regions as well as in seasonally varying currents like the NECC in

the Atlantic and the Somali Current of East Africa. In these regions, it is most likely the

seasonal cycle of u and v that leads to erroneous implications about the EKE. Though it

cannot be ruled out, that also the EKE varies with the seasons. In the ACC, amplitudes of

up to 500cm2s−2 can be observed while again, lowest values are found in the subpolar and

polar regions (< 10cm2s−2). The subtropical gyres have amplitudes between < 5cm2s−2

and ∼ 100cm2s−2 with minima in the eastern parts. These findings are in agreement with

previous studies, e.g. Scharffenberg and Stammer (2010) and Zhai et al. (2008). Note

that the EKE in Zhai et al. (2008) is too high by a factor of two and has to be divided

by this factor, to be comparable to this study (R. Greatbatch, pers. comm.).

The amplitude of the seasonal cycle of EKE in ORCA12 shows high similarity to

the AVISO EKE. In figure 10, only regions with an amplitude of ≥ 150cm2s−2 or, for

values lower than 150cm2s−2, an amplitude at least 30% of the mean are shown. Choosing

only the ’30% of the mean’-criterion rules out various regions with large mean EKE levels,

although there are amplitudes well above 200cm2s−2. Only inspecting regions showing a

large amplitude in the absolute sense, on the other hand, rules out a lot of areas with low

EKE levels, with amplitudes in the same order of magnitude as the mean. Therefore, a

combination of both criteria is used.

The amplitude in the GS and Kuroshio regions is slightly lower in ORCA12 than

in AVISO with values not exceeding 1000cm2s−2 . Most of the rest of the ocean basins

show large agreement between AVISO and ORCA12. The subpolar and polar regions

and the eastern subtropical gyres have very low amplitudes < 10cm2s−2. Interestingly,

these fulfil the above mentioned criteria in vast areas around Antarctica, the SP and SA,
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while in the NP and NA, regions with small amplitudes generally do not show a signif-

icant seasonal cycle. Some regions do not fulfil the significance criterion, despite they

have a relatively high amplitude of the seasonal cycle. These regions include the whole

Northeastern Altantic (NEA) and the ACC. The spatial distribution of regions showing

a significant seasonal cycle in ORCA12 shows good agreement with figure 4(b) in Zhai

et al. (2008). They show the seasonal cycle of EKE to be only a small portion of the total

variability in most of the Southern Ocean and the NEA, while it has a large contribution

in the subtropical regions.

4.1.4 Phase of the Seasonal Cycle of Eddy Kinetic Energy

The phase of the seasonal cycle of EKE, the month with the highest EKE, shows a

symmetry about the equator in AVISO. While the midlatitude NH shows maximum

EKE during May to August, the southern midlatitudes reach a maximum in November

to February. Globally, south of 30◦S, no clear signal can be seen, except for a maximum

in southern fall along the Antarctic continent. The NP subpolar gyre has a clear northern

winter maximum in EKE, while in the subpolar NA the maximum of the seasonal cycle is

located in spring. These results are similar to the ones by Zhai et al. (2008), who also had

a long period of satellite data avialable (12 years). In other studies with shorter temporal

data coverage, the results are contrasting. Scharffenberg and Stammer (2010) used 4

years of satellite data and found the phase of the seasonal cycle to be very heterogeneously

distributed, although some similarities to this study can be seen. Additionally, Stammer

and Wunsch (1999) found opposing seasonal cycles with winter/spring maxima in the NH

subtropical regions.

The model reproduces the phase of the seasonal cycle remarkably well on a global

scale. The symmetry about the equator is even more evident than in AVISO. The sub-

polar gyres have a spatially more homogeneous distribution of the phase of the EKE’s

seasonal cycle. This might be due to the longer time period of the model output which

reduces noise levels. Highly spatially variable regions in the AVISO dataset are observed

to show no significant seasonal cycle in ORCA12, e.g. the ACC and the NEA. Even small

local features are represented in ORCA12. At the western and southern coast of Aus-
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tralia the Leeuwin Current can be identified as a source for EKE for the Southern Indian

Ocean (Scharffenberg and Stammer, 2010) with a southern winter maximum. A winter

maximum is also observed along the Brazil Current. The only region with large discrep-

ancies between AVISO and ORCA12 is the subpolar NA, where AVISO EKE shows a

winter/spring maximum and ORCA12 has a maximum in summer.

Summarizing the findings of the global comparison, it becomes clear that ORCA12 does

reproduce the observed EKE levels and its seasonal cycle remarkably well, especially in

the regions of interest here, the midlatitudes. Because there are some minor differences

concerning the exact locations of currents, especially the WBCs and its extensions, a

direct, quantitative comparison in the form of correlations etc. on a global scale is not

prone to deliver satisfying results. Therefore, this direct comparison is performed on

a regional scale in section 4.2 for the WBCs and section 4.3 for the subtropical gyres’

interior.

4.2 Western Boundary Currents

After evaluating the model’s performance on a global scale, the WBCs in the NH will

now be examined in detail. The GS, as well as the Kuroshio and its extension show

similar behavior of the mean EKE. Maximum levels are found in the western parts, near

the separation points, with more than 2000cm2s−2 (Fig. 13 (a) and (b)). EKE levels

between 500cm2s−2 and 1000cm2s−2 are extending as far east as 40◦W in the GS and

165◦E in the Kuroshio. Compared to observations, both currents are too far north at

their separation points by roughly 2◦ (Brachet et al., 2004; Ducet and Le Traon, 2001;

Zhai et al., 2008). The GS shows a second maximum in mean EKE located around 43◦N ,

45◦W with values > 1000cm2s−2, which is also observed in the satellite data, but the area

between 50◦W and 60◦W has too low EKE in ORCA12 (maximal differences to observed

EKE ∼ 2000cm2s−2, compare Brachet et al. (2004)). The Kuroshio, in comparison to

the GS, shows a strictly zonal extension and a quasi-stationary meander between 142◦E

and 153◦E. This has also been observed by satellite altimetry (Qiu, 2002).

The amplitudes of the EKE’s seasonal cycles (Fig. 13 (c) and (d)) are largest in the
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Figure 13: Mean surface EKE from ORCA12 (top) for the Gulf Stream region (a) and
the Kuroshio region (b), amplitude of the seasonal cycle of surface EKE (middle) for GS
(c) and Kuroshio (d) and phase of the seasonal cycle of surface EKE (bottom) for GS (e)
and Kuroshio (f). Lines in (a)-(f) show the boxes used for later investigations. Box (1):
solid; box (2): dashed; box (3): dash-dotted; box (4): dotted. The color scale in (e) and
(f) indicates the month with maximum EKE from January through to December.
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eastern parts of both WBCs, near the separation point. Amplitudes of 500cm2s−2 and

more are found between 64◦W and 72◦W in the GS and between 142◦E and 149◦E in

the Kuroshio, where the amplitude is slightly higher than in the GS. Amplitudes of more

than 100cm2s−2 are found as far east as 40◦W in the GS and 175◦E in the Kuroshio.

Regarding the phase of the EKE’s seasonal cycle, it has already been shown (Fig.

12) to be in general agreement with previous studies, showing a summer maximum in

the subtropical oceans. Various studies also found this to apply for the GS (Brachet

et al., 2004; Ducet and Le Traon, 2001; Stammer and Wunsch, 1999; Zhai et al., 2008)

and Kuroshio (Adamec, 1998; Ducet and Le Traon, 2001) regions. The ORCA12 model

with its high resolution of 1/12◦ and relatively long time period of 26 years allows a

more detailed investigation, as less spatial smoothing is required. This reveals some

intriguing local features shared by both, the GS and the Kuroshio. Embedded in a

background of summer maxima in the subtropical gyres, the cores of the WBCs, after

their separation from the coast, show a winter maximum in EKE at their northern margins

and a spring maximum at their southern margins (Fig. 13). This feature extends to the

east to 58◦W in the GS and 153◦E in the Kuroshio. The eastward extend approximately

correlates with the eastward extend of mean EKE levels > 1000cm2s−2 in both WBCs.
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Figure 14: Sections of zonal mean EKE against latitude in the North Atlantic (a) and
North Pacific (b). Solid lines indicate zonal mean EKE averaged over the western parts
of the WBCs (black), 60◦W −70◦W in the NA (a) and 143◦E−158◦E in the NP (b), and
the eastern parts of the WBCs (blue), 40◦W to 50◦W in the NA (a) and 158◦E−170◦E in
the NP (b). Dashed lines show the zonal mean phase for the western (black) and eastern
(blue) parts. Months of the phase are indicated at the right.
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Figure 15: as figure 14 (a) but for AVISO
data

Further downstream of both currents, the

phase shifts towards later months in the

year with longitude. Latest maximum

EKE is found in September/October east

of 50◦W in the GS and 163◦E in the

Kuroshio.

To further illustrate this, figure 14

shows sections of zonal mean EKE for the

western and eastern parts of the GS and

the Kuroshio. In the western NA subtrop-

ical gyre EKE is below 100cm2s−2 south of 33◦N , accompanied by a maximum of the

seasonal cycle ranging from May to August. North of 33◦N EKE rises to over 1500cm2s−2

with a maximum at 38◦N , which can be seen as the core of the GS. This EKE maximum is

accompanied by a phase shift towards spring and winter further north up to 40◦N . North

of this minimum, the phase shifts back to August with EKE dropping to < 100cm2s−2

again at 42◦N . A similar behaviour, though not as pronounced, is seen by Scharffenberg

and Stammer (2010) in their figure 21, although they do not comment on this.

The situation in the NP is almost identical. Low EKE with a maximum in the

summer months (May to August) south of 33◦N is followed further north by a steep

incline in EKE from 32◦N to 37◦N which also coincides with a phase shift towards

spring. Declining zonal mean EKE between 37◦N and 43◦N is then accompanied by an

EKE maximum in winter (November to February). North of the Kuroshio however, the

phase remains in winter months in contrast to the GS region. This difference though is

not too surprising, as the GS is bounded by the North American continent/shelf towards

the North, while the open North Pacific Ocean is located north of the Kuroshio.

In both WBCs, this phase shift towards winter in the core is only observed in the

western parts with high EKE. Further to the east, where EKE levels are below 1000cm2s−2

in the zonal mean, the maximum of the seasonal cycle of surface EKE lies between July

and September across the core of the current.

The zonal mean EKE in the North Atlantic derived from AVISO data is depicted in
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maximum have the largest influence. In the GS, EKE peaks in July when averaged over

box GS(1) (Fig. 16 (a)), the mean amplitude of the seasonal cycle however is rather

small with ∼ 60cm2s−2. In the Kuroshio the amplitude of the seasonal cycle in box K(1)

is ∼ 110cm2s−2. When averaging over box GS(4),K(4) further east, both, the GS and

the Kuroshio, show a phase shift towards fall, as observed in previous figures. The mean

EKE in box GS(4) of the GS area however is higher than that of box K(4) in the Kuroshio

area. This is due to the maximum in EKE in the region where the GS turns towards the

north, described in figure 13 (a).

The boxes GS(2),K(2) located just south of the WBCs cores are similar to the

boxes GS(1),K(1) as they show a relatively robust summer (June) maximum (Fig. 16

(c) and (d)) with slightly higher amplitude of ∼ 150cm2s−2. The interannual variability,

illustrated by the standard deviation of the time mean seasonal cycle, is twice as large in

the GS as in the Kuroshio region. Regarding the winter/spring maximum in the cores of

both WBCs, figure 16 (c) and (d) shows that, when averaging over these regions (boxes

(3)), this phase of the seasonal cycle is associated with a very small amplitude, especially

considering the large interannual variability. In the Kuroshio, this box (3) shows almost

no seasonal cycle at all.

Both NH WBCs show a large variability of the seasonal cycle of surface EKE.

Distinct local features such as the winter/spring maximum in areas with highest mean

EKE near their separation points clearly separate these regions from the surrounding

summer maximum characteristic for the subtropical gyres.

4.3 Subtropical Gyres

In contrast to the highly variable GS and Kuroshio, the interior of the subtropical gyres

shows a considerably lower EKE level and a spatially rather homogeneous distribution

of the phase of the seasonal cycle. First, the regions adjacent to the NH WBCs will be

investigated in section 4.3.1, later in section 4.3.2 their SH counterparts will be compared.
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4.3.1 Northern Hemisphere

The surface EKE in the subtropical gyres’ interior is generally low compared to regions

with strong current bands. In the NA box NA(1) (20◦N − 35◦N , 50◦W − 70◦W ), the

mean EKE is ∼ 30cm2s−2 with lowest levels in the east and higher values of 70cm2s−2 −
100cm2s−2 in the western parts, close to the GS (Fig. 17 (a)). The mean EKE shows no

significant meridional changes. In the NP box NP(1) (20◦N − 35◦N , 160◦E − 190◦E),

the northern part (box NP(3)) is similar to its Atlantic counterpart with EKE levels of

∼ 50cm2s−2 and no major zonal differences (Fig. 18 (a)). In the southern part (box

NP(2)) however, a zonal band of elevated EKE levels (∼ 100cm2s−2) is observed, that is

probably associated with the Subtropical Counter Current.

The distribution of the amplitude of the seasonal cycle resembles that of the mean

EKE. A small amplitude of 5cm2s−2 − 30cm2s−2 is found in the NA with higher values

towards the eastern margins of the region (Fig. 17 (b)). The amplitude in the NP is

generally higher than in the NA, ranging from 20cm2s−2−50cm2s−2 in the northern part

(box NP(3)) and 30cm2s−2 − 100cm2s−2 in the southern part (box NP(2), Fig. 18 (b)).

Despite the different dynamical settings of the two regions (NA and NP) with the

Subtropical Counter Current in the Pacific, the phase of the seasonal cycle of surface

EKE is very similar. Maximum EKE is found in a range from May to August almost

everywhere in the investigated regions (box NA(1),NP(1), Fig. 17 (c) and Fig. 18 (c)),

as observed in geostrophic EKE from satellite altimetry (Scharffenberg and Stammer,

2010; Zhai et al., 2008). In the NA, the southern part (box NA(2)) shows more regions

with maximum EKE in May and June, while in the northern part (box NA(3)) phases of

July and August are common. This difference is also evident in the NP, although not as

pronounced.

These qualitative inspections are supported by some more quantitative investiga-

tions of the mean seasonal cycles averaged over the different boxes (Fig. 17 (d) and Fig.

18 (d)). In the NA, when averaging over the whole region (box NA(1)), the seasonal cycle

has an amplitude of little more than 20cm2s−2 and a maximum in July. Boxes NA(2)

and NA(3) both have a smaller amplitude of 15cm2s−2 and a phase in May/June for the

southern box and July/August for the northern box. The general impression in the NP
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of only 8cm2s−2 but also shows only marginal interannual variability. The SP boxes

show a very similar behaviour with comparable or even lower interannual variability and

amplitudes of roughly 60cm2s−2, 90cm2s−2 and 30cm2s−2 for boxes SP(1),SP(2) and

SP(3) respectively.

5 Discussion of Possible Mechanisms

To explain the observed seasonal cycles of surface EKE, different possible mechanisms

are tested. The most important aspect of producing mesoscale eddy kinetic energy is

the barotropic and baroclinic instability. Beckmann et al. (1994) see the velocity shear

between the Mixed Layer and the interior oceans as crucial in generating eddy kinetic

energy, especially in the interior of the subtropical gyres. This will be tested by investi-

gating the mean seasonal cycle of vertical shear of velocity ∂u
∂z
, calculated from the mean

seasonal cycle of velocities, averaged over the top 50m and from 50m− 500m. If the sea-

sonal cycle of EKE was in phase with the vertical shear, the seasonally varying generation

of EKE could be responsible for this seasonal cycle.

Regarding the Gulf Stream System however, Zhai et al. (2008) found no correlation

of the eddy production estimated by the eddy growth rate time scale with EKE levels ob-

served. They suggest the dissipation of EKE being responsible for the expressed seasonal

cycle, rather than the generation of EKE. Two possible mechanisms are discussed here,

that could lead to a seasonal cycle in eddy dissipation rates and therefore the seasonal

cycle of EKE itself.

First, the thermal capping of eddies due to a strong thermocline in summer is dis-

cussed. In summer, the thermocline decouples the eddies from the atmosphere, which

strongly influences EKE through thermal interaction (Zhai and Greatbatch, 2006b) in

winter, when high temperature differences between ocean and atmosphere lead to a strong

damping. This mechanism is addressed by inspecting the mean seasonal cycle of the dif-

ference of potential density between 160m depth and the surface, derived from a monthly

climatological density field. This indicates the strength of the decoupling of the surface

mixed layer from the deeper ocean, which is assumed to have a constant density.
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The second proposed mechanism to dissipate the EKE to a seasonally varying

extend, is a direct mechanical damping exerted onto the eddies by wind stress. The

wind stress is a function of the relative velocity between atmosphere and ocean. In

regions where wind and ocean current point into the same direction, the wind stress is

reduced compared to a case where the ocean is motionless. On the other hand, in regions

where ocean currents and wind flow into opposite directions, the wind stress is enhanced.

This reduction/enhancement by accounting for the relative motion between atmosphere

and ocean however, has a non-linear effect. The magnitude of the reduction of wind

stress is smaller, in an absolute sense, than the enhancement. Consequently, the wind

stress dissipates EKE through its dependence on the relative motion. Furthermore, this

damping itself is non-linearly connected to the wind speed, resulting in an exponential

increase in wind stress with an increase in wind speed. As the wind stress is dependent on

the wind speed directly, a larger damping of surface EKE is anticipated at times of higher

wind speed (Zhai and Greatbatch, 2007). This will be tested by an investigation of the

seasonal cycle of the monthly climatological magnitude of the wind stress τ =
√

τ 2x + τ 2y .

The focus will first be put on the subtropical gyre regions in section 5.1. The WBCs

will be studied in detail in section 5.2.

5.1 Subtropical Gyres

5.1.1 Wind Stress Damping and Thermal Capping

The northern hemisphere subtropical gyres both show a clear seasonal cycle of surface

EKE with a maximum in the summer months (Fig. 17 and 18). The seasonal cycle

of the difference of potential density between 160m depth and the surface is similar in

both ocean’s subtropical gyres (Fig. 21 (a) and (b)), with a minimum in March and a

maximum in August/September. In both, the NA and NP, the region closer to the equator

(boxes NA(2),NP(2)) shows a less pronounced amplitude of the seasonal cycle. In spring,

these annual cycles correspond to the theory of thermal capping being responsible for

the elevated EKE levels in summer. The stratification starts to increase, decoupling the

interior ocean from the atmosphere, in April. This roughly corresponds to the increase
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in EKE in the NH subtropical gyres. However, the strong stratification does last until

October and only then decreases, while EKE is already substantially lowered in October,

compared to the summer. Furthermore, it is questionable whether the difference between

air and sea temperatures is large enough, at least in the southern parts of the gyres, to

significantly damp the EKE in winter.

The seasonal cycles of the difference between potential density at 160m depth and

the surface in the SA and SP (Fig. 21 (c) and (d)) are comparable to the cycles in the

NH. In SH late winter (August to October), the stratification shows a minimum. From

October on, it exhibits a sharp increase with the development of the shallow summer

Mixed Layer, before reaching its maximum in February/March. As for the NH this annual

cycle cannot explain the full seasonal cycle of surface EKE through thermal capping in

summer and thermal damping in winter. Stratification starts to increase substantially as

late as October/November, while the surface EKE is already approaching its maximum

in November.

The wind stress τ shows substantial differences between the various subtropical

gyres. In the NA, τ has a semi-annual cycle which is less pronounced in the north (Fig.

21 (a)). Averaged over the whole region (box NA(1)), τ has its maximum in Decem-

ber/January with 0.07Nm−2, then decreases towards a local minimum in May/June (<

0.04Nm−2). After this minimum, an increase is observed again until July (> 0.05Nm−2).

Later in the year a second local minimum is found in September/October (again <

0.04Nm−2). This semi-annual cycle stands in clear contrast to the annual cycle of EKE.

According to the the theory of wind work damping the EKE, a local minimum of EKE in

July should be observed at least in the southern region of the NA (box NA(2)). However,

it is possible that the higher stratification in summer leaves the wind work ineffective in

damping the EKE. A combination of both, the damping through wind work in winter

and the thermal capping in summer, could be responsible for the observed annual cycle of

EKE. An inspection of the other subtropical gyres shows that such a connection cannot

be established in general.

In the NP for example (Fig. 21 (b)), the seasonal cycle of τ has a strong maximum

(0.14Nm−2) in January in the northern region (box NP(3)), followed by values below
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Figure 21: Mean seasonal cycles for the density difference between 160m depth and the
surface (blue) as an indicator of the strength of the stratification and the wind stress
(black). Averaged over different boxes shown in figures 17-20 for the North Atlantic (top
left), North Pacifc (top right), South Atlantic (bottom left) and South Pacific (bottom
right).

0.05Nm−2 from April through to October. Thus it exhibits a large amplitude of the sea-

sonal cycle with a phase that supports the wind work damping hypothesis. In contrast,

the southern region (box NP(2)) has no seasonal cycle at all, with τ between 0.04Nm−2

and 0.08Nm−2 throughout the year, with maxima in April and October/November. Fig-

ure 18 shows both boxes, NP(2) and NP(3), have a very similar annual cycle of surface

EKE, only differing in the mean. The wind work seems to have no clear influence on

the EKE on a seasonal time scale in the NP, as two sub-regions with totally different

temporal variability of τ show astonishingly similar annual cycles of EKE.

The wind stress in the SA is generally < 0.06Nm−2 (Fig. 21 (c)), comparable to

the NA. The wind stress τ in the northern part (box SA(2)) is < 0.05Nm−2 throughout
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the year with a minimum of 0.03Nm−2 in May, while the southern part (box SA(3))

has a clear maximum of τ in June/July and τ < 0.04Nm−2 for the rest of the year. In

the SP τ is larger than in the SA on average (Fig. 21 (d)), comparable to the NH. Box

SP(2) in the SP has maxima of τ ∼ 0.08Nm−2 in April, September and December with

minima in between these months, the strongest being in July (< 0.05Nm−2). Box SP(3)

in contrast, shows lower levels of τ < 0.06Nm−2 with a minimum in October/November

(< 0.04Nm−2) and a weak maximum in February. As for the NH, the annual cycles

of wind stress show considerably differing behaviour for the different boxes, while the

seasonal cycles of surface EKE are remarkably similar.

To summarize, the findings of this section suggest the seasonal cycle of surface

EKE in the investigated subtropical gyre regions not to be influenced significantly by the

annual cycles of stratification and wind stress. Possible explanations for the observed

behaviour include the heat fluxes and wind work being too low in the subtropical gyres

to substantially damp the surface EKE. Wind stress in the investigated regions is two to

four times lower than in the WBC regions and the dissipation time scale for temperature

anomalies in the NA is also estimated to be about five times as high as in the GS region

(Zhai and Greatbatch, 2006a).

5.1.2 Vertical Shear and Velocity Profiles

The dissipation of EKE through atmospheric forces, the wind stress and heat flux, does

not seem to be responsible for the observed annual cycle of EKE. Therefore, the hypothesis

of local baroclinic instabilities being responsible for the EKE in general, and the seasonal

cycle of EKE in particular, is tested in this section. The vertical shear of horizontal

velocity is used as an indicator for these instabilities.

In the NA and NP, the vertical shear of horizontal velocity in the top 50m clearly

peaks in the summer months (Fig. 22 (a) and (b)) with maxima in June/July between

0.3× 10−3s−1 and 0.4× 10−3s−1, which is followed by a rapid decrease until September.

Throughout the winter months, the shear is close to zero in the top 50m. In Febru-

ary/March a rather gradual increase towards the summer maximum is observed. The
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Figure 22: Vertical shear of velocity averaged over the top 50m (blue) and from 50m-500m
(green). Averaged over the different boxes shown in figures 17-20 for the North Atlantic
(top left), North Pacifc (top right), South Atlantic (bottom left) and South Pacific (bottom
right).

deeper ocean (averaged from 50m−500m), however, exhibits no significant vertical shear

of horizontal velocities in any season. Further inspection of a selection of vertical profiles

of horizontal velocity (Fig. 23 (a) and (b)) shows the observed vertical shear to be located

at the base of the Mixed Layer. In the NA (Fig. 23 (a)), in January, no vertical shear of

horizontal velocity is observed in the top 70m with U ∼ 2.2cms−1. Beneath the Mixed

Layer a weak shear is observed when U increases towards 2.4cm−1 at 140m. The velocity

profile further down is very similar in all seasons. In July, a large shear is observed near

the surface. Velocities of 4cms−1 in the very shallow Mixed Layer decrease towards the

background flow in the main thermocline. In October, the Mixed Layer depth increases

to ∼ 30m, as can be concluded from the homogeneous U above and the shear towards the
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background around 50m−70m depth. In the NP (Fig. 23 (b)) the evolution of horizontal

velocity throughout the year is similar. A rather constant background flow below 200m

is opposed by strongly variable flow close to the surface. Generally the velocities are

slightly larger in the NP, compared to the NA. In July, a maximum velocity of almost

5cms−1 is observed in the very shallow Mixed Layer, leading to a large shear towards the

layers below. Also, in January, the shear is highest at the base of the Mixed Layer at

around 120m.

In the SH, the SA’s seasonal cycle of vertical shear of U (Fig. 22 (c)) is comparable

to the cycles observed in the NH. Maximal shear between 0.3×10−3s−1 and 0.4×10−3s−1

is reached in the summer months (November to February) and negligible vertical shear

is observed in winter (May to July), as well as below the Mixed Layer, averaged from
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Figure 23: Profiles of velocity |U | for January (solid), July (dashed) and October (dash-
dotted). Averaged over the boxes (1) shown in figures 17-20 for the North Atlantic (top
left), North Pacifc (top right), South Atlantic (bottom left) and South Pacific (bottom
right).
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50m− 500m. The profiles of horizontal velocity (Fig. 23 (c)) are also comparable to the

NH counterparts. When the Mixed Layer is shallow in January, velocities at the surface

are strong (4cms−1) and in winter velocities are small (< 2.5cms−1) everywhere. Contrary

to the other three investigated gyres, the SP has an overall lower level of vertical shear

with maxima around 0.2 × 10−3s−1 (Fig. 22 (d)). While box SP(2) of the SP exhibits

the known pattern of maximum shear in summer in the top 50m and almost no shear in

winter and below 50m, box SP(3) shows a different behaviour. The vertical shear of the

top 50m in box SP(3) has a maximum in October followed by a minimum in December,

with a secondary maximum in February. Throughout the winter months, the annual cycle

in box SP(3) is similar to that of box SP(2). The profiles of |U | in the SP (Fig. 23 (d))

also are significantly different from the other three gyres. An almost constant decrease

of |U | from the surface down to 200m is observed in the summer months (October and

July) and the surface velocity is only slightly decreased in winter (July).

The investigated vertical shear of horizontal velocity (Fig. 22) and vertical profiles

of this velocity (Fig. 23) suggest surface-intensified mechanisms being responsible for the

annual cycle of surface EKE. This suggestion is supported by an inspection of EKE at

100m depth (Fig. 24) and vertical profiles of EKE (Fig. 25). The EKE at 100m depth

and the profiles of EKE have been derived from a second model run, from which data at

depth was available, but investigations of EKE profiles are assumed to be transferable to

the results from the main run (cf. section 2.2).

The EKE at 100m generally shows significantly reduced or absent seasonal cycles

compared to the surface. In the NA (Fig. 24 (a)), the southern part of the investigated

region (box NA(2)) has no annual cycle at all with EKE ∼ 20cm2s−2 throughout the

year. The northern box NA(3) shows a minimum in EKE (∼ 31cm2s−2) from February

to April but no summer maximum as EKE levels remain around 37cm2s−2 from June to

December. Most notable concerning the surface intensification of the seasonal cycle, in

winter, EKE at 100m is only reduced by < 5cm2s−2 and < 10cm2s−2 for box NA(3) and

NA(2), respectively, while the reduction compared to the surface exceeds 20cm2s−2 in

summer. A similar pattern is observed in the NP (Fig. 24 (b)). Mean EKE is higher in

the NP than in the NA as already noticed before (Fig. 17 and 18) and the annual cycle
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Figure 24: EKE at 100m depth (black lines) from a second model run and surface EKE
(blue) from the same model run for comparison. Averaged over the different boxes shown
in figures 17-20 for the North Atlantic (top left), North Pacifc (top right), South Atlantic
(bottom left) and South Pacific (bottom right).

is more pronounced. In contrast to the NA, the summer maximum is detectable at 100m

depth in the NP in all boxes. Similar to the NA though, the reduction of EKE compared

to the surface is much larger in summer (∼ 30cm2s−2) compared to winter (10cm2s−2

in box NP(2), 5cm2s−2 in box NP(3)). Additionally, there is a shift in the phase of the

seasonal cycle. At the surface, the maximum EKE in the NP is located in June, while

at 100m depth, the seasonal cycle peaks in July/August. The SA EKE at 100m depth

(Fig. 24 (c)) is comparable to the NA. The area closer to the equator (box SA(2)) has

no annual cycle, while box SA(3) has a weak seasonal cycle at 100m. As in the NA, the

EKE at 100m is only marginally decreased compared to the surface EKE in winter, but

shows a significant reduction of > 40% in summer. As in the NH, the EKE in the SP
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Figure 25: Profiles of EKE from the surface to ∼ 500m for winter (DJF, solid), spring
(MAM, dashed), summer (JJA, dash-dotted) and fall (SON, dotted). Averaged over boxes
(1) shown in figures 17-20 for the North Atlantic (top left), North Pacifc (top right),
South Atlantic (bottom left) and South Pacific (bottom right). EKE here is only a 2-year
average.

(Fig. 24 (d)) is larger than in the Atlantic in the mean but the evolution of EKE at 100m

depth is similar to the other three subtropical gyres with small reductions compared to

the surface in winter and substantial decrease of EKE towards depth in summer.

To further illustrate the above mentioned decrease of the seasonal cycle’s amplitude,

figure 25 depicts vertical profiles of EKE for the four investigated subtropical gyres. The

monthly EKE used here is only a two-year mean ’climatology’ ,in contrast to the 26 years

used in the rest of the study. Though, as the interannual variability in the subtropical

gyres is low (Fig. 17-20), the presented results are assumed to represent the mean state

to a satisfying extend.
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Figure 26: as Fig. 25 (a) but for EKE from
a 1/4◦ model.

The vertical profiles of EKE in the

NA (Fig. 25 (a)) and NP (Fig. 25

(b)) are similar. EKE is ∼ 15cm2s−2 at

500m depth, increasing to ∼ 30cm2s−2 at

200m. Closer to the surface the NP ex-

hibits a stronger increase than the NA,

with surface EKE between 60cm2s−2 and

100cm2s−2 in the NP and 40cm2s−2 −
60cm2s−2 in the NA. The Pacific’s higher

mean surface EKE is shown in section 4.3.

A shared property of both NH subtropical gyres is the absence of significant seasonal

variations of EKE below 200m depth. In the NP, homogeneous EKE throughout the

year extends up to 100m. Above this low variability at depth, a seasonal cycle can be

observed, which drastically increases towards the surface, resulting in the maximum am-

plitude of the annual cycle of EKE at the sea surface. The profiles of EKE in the SA

(Fig. 25 (c)) compare well to the NA. A surface intensified annual cycle is found above

∼ 120m, on top of an ocean interior with weak seasonal variability. Concerning the verti-

cal distribution of EKE, the SP is a special case compared to the other three subtropical

gyres investigated, as already seen in figure 23. Although the annual cycle of EKE is

surface intensified in the SP, as in the other gyres, a weak seasonal cycle can also be

found at depth (down to ∼ 300m). Near the surface however, the SP is almost identical

to the NP with a clear EKE maximum in summer and lowest EKE in winter.

With 1/12◦ resolution the ORCA12 model is able to produce variability on the

sub-mesoscale with length-scales of only a few kilometers. To rule out the possibility

of sub-mesoscale variability being responsible for the observed surface intensification of

variability, a similar profile of EKE is derived from the ORCA025 1/4◦ model (Fig. 26).

The ORCA025 model is based on the same model code as ORCA12 but differs in resolu-

tion and some parametrizations. Nevertheless, the profiles of EKE, exemplarily shown for

the NA region, show the surface-intensification in fact to be a property of the mesoscale

kinetic energy, especially emphasized in the summer months.
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Summarizing the results of section 5.1.2, it is evident, that the seasonal cycle of the

vertical shear of horizontal velocity is strongly correlated to the seasonal cycle of surface

EKE in the subtropical gyres. Although this correlation does not prove any causalities,

there are several facts that point towards some form of connection between this vertical

shear and the EKE.

Previous studies already found the weak mean currents of the mid-ocean to be able

to generate EKE through baroclinic instability (Arbic, 2000; Gill et al., 1974) and more

important, Beckmann et al. (1994) indeed pointed out the importance of a velocity shear

between the Mixed Layer and the interior ocean, especially in the subtropical gyres. A

study by Yang et al. (2013), based on ARGO floats in the northwestern Pacific found

cyclonic and anticyclonic eddies to be trapped near the surface, only extending downwards

to 120m and 100m, respectively, in a region comparable to the NP region of this study.

Furthermore, a remote source of the seasonal cycle of observed EKE in the mid-ocean is

unlikely, as the whole subtropical gyres exhibit the same phase of the annual cycle. If

EKE propagated to the interior of the gyres from strongly unstable boundary currents, a

phase shift with distance from these currents could be expected (as observed in the South

Indian Ocean subtropics, where the Leeuwin Current west of Australia radiates EKE

into the subtropical gyre (Scharffenberg and Stammer, 2010)). Taking into account the

surface-intensified seasonal cycle of EKE described in this section, one hypothesis seems

favourable to explain the source of this cycle in the subtropical gyres: A background field

of EKE without a seasonal cycle exists in the gyres’ interior, the source of which cannot

be identified within the limits of this study. Superimposed onto this background EKE,

the local near-surface shear generates additional EKE in summer which is responsible

for the observed seasonal cycle. Nevertheless, a combination of the external atmospheric

dissipation processes and some internal generation mechanisms cannot be ruled out as a

source for the seasonal cycle in EKE. Additionally, some factors not accounted for in this

study could also play a role.

55



5.2 The Western Boundary Currents and Interannual Variability

In the WBC regions, the discussion focusses on the two dissipation processes presumably

involved in producing the seasonal cycle of surface EKE. Baroclinic and barotropic in-

stability processes are well known to be the source of EKE in these regions and do not

exhibit a strong seasonal cycle or maximum in winter (Zhai et al., 2008). Investigating

the vertical shear of horizontal velocities will not at all account for the various different

EKE generation mechanisms here, so an inspection of these terms will not be undertaken.

The annual cycles of the density difference between 160m depth and the surface

in the GS and Kuroshio current systems (Fig. 27) both show a low level of strati-

fication from December to April, then increasing towards a maximum in August and

August/September in the GS and Kuroshio, respectively. The wind stress is generally

higher in the vicinity of the WBCs, compared to the interior subtropical gyres (Fig.

24). Furthermore a clear seasonal cycle can be observed in both, the GS and Kuroshio

current systems, with largest wind stress > 0.15Nm−2 in winter (maxima ∼ 0.18Nm−2

in January). In the GS, as well as in the Kuroshio region, wind stress exhibits a grad-

ual decline from February to May after the winter maximum, followed by reduced wind

stress (∼ 0.06Nm−2) throughout the summer until September in the GS and October

(a)

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

τ 
[N

/
m

2
]

box1 box2 box3 box 4

0.5

1.0

1.5

2.0

2.5

3.0

3.5

d
e
n
si

ty
 [
k
g/
m

3
]

τ

ρ(160)−ρ(0)

Seasonal Cycle of τ and ρ, Gulf Stream region (GS)

box1 box2 box3 box 4box1 box2 box3 box 4

(b)

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

τ 
[N

/
m

2
]

box1 box2 box3 box 4

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

d
e
n
si

ty
 [
k
g/
m

3
]

τ

ρ(160)−ρ(0)

Seasonal Cycle of τ and ρ, Kuroshio region (K)

box1 box2 box3 box 4box1 box2 box3 box 4

Figure 27: Mean seasonal cycles for the density difference between 160m depth and the
surface (blue) as an indicator of the strength of the stratification and the wind stress
(black). Averaged over different boxes shown in figure 13 for the Gulf Stream region (left)
and Kuroshio region (right).
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in the Kuroshio region. The wind stress is therefore three to four times higher in win-

ter, compared to summer. Although the seasonal cycles of the two inspected dissipation

mechanisms seem to favour the hypothesis of dissipation being responsible for the ob-

served annual cycle in surface EKE, there still are some discrepancies that hint to some

other factors being involved. First, while wind stress is at approximately the same, low

level from May to October and stratification has its maximum in August/September, the

maximum in surface EKE is observed in June/July. This feature cannot be explained

directly by either of the dissipation terms or a combination of both. Second, while in the

annual cycle of surface EKE a shift of the phase towards later in the year is observed

towards the east (downstream), there is no such shift in the dissipation terms. Despite

having a clear and substantial influence on the seasonal cycle of surface EKE, the dissi-

pation through wind work and heat fluxes does not succeed in explaining it in detail. It

is assumed, that other processes, such as the advection of EKE with the mean current,

should not be neglected in the WBC systems.

As for the subtropical gyres, the EKE at 100m depth from a second model run

(cf. section 2.2) is compared to the surface EKE (Fig. 28) to test for possible surface

intensification of the seasonal cycle. In the GS region (Fig. 28 (a)), especially when

averaged over the whole area (box GS(1)), the seasonal cycle present at the surface is
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Figure 28: EKE at 100m depth (black lines) from a second model run and surface EKE
(blue) from the same model run for comparison. Averaged over the different boxes shown
in figure 13 for the Gulf Stream region (top left) and the Kuroshio region (right)
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absent at 100m depth with only a weak maximum in December. Also for boxes GS(3)

and GS(4) the maximum surface EKE in summer/late summer is not detectable at 100m.

Only in box GS(2) does the EKE at 100m peak in the summer months. Notably, the

difference of EKE at the surface to EKE at 100m is larger in summer compared to winter.

This difference is up to 200cm2s−2 in boxes GS(2) and GS(3) and 100cm2s−2 in boxes

GS(1) and GS(4) in summer and only < 100cm2s−2 in boxes GS(2) and GS(3) and

< 50cm2s−2 in boxes GS(1) and GS(4) in winter. This compares well to the annual cycle

of EKE at 100m depth in the Kuroshio region (Fig. 28 (b)). Similar to the GS, box K(1)

shows no annual cycle at 100m depth with differences to the surface being up to ∼ 4

times higher in summer, compared to winter. Averaged over box K(3), the seasonal cycle

even exhibits a clear maximum in winter at 100m, opposed to a maximum in July at the

surface. Boxes K(2) and K(4) have no phase shift at 100m compared to the surface but

still show greater reduction of EKE at depth in summer, compared to winter.

The reduction, or in some cases reversion, of the annual cycles of EKE at 100m

depth, compared to the surface EKE, indicates surface or near-surface processes to be

responsible for the observed seasonal cycle at the surface. This supports the hypothesis of

wind work and thermal dissipation being the driving factors in determining seasonal vari-

ability of surface EKE in the vicinity of the WBCs, as these factors are atmospherically

driven and therefore clearly surface-related.
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Figure 29: Wind stress τ (blue) and surface EKE (black) in the Kuroshio region for 1995
(left) and 2005 (right. Dashed lines indicate the monthly mean values, solid lines show
the fitted seasonal cycle.
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Although, averaged over the available 26 years, the dissipation of surface EKE

seems to be the driving mechanism in determining the annual cycle, the generation of

EKE in the WBCs remains a highly chaotic process and the presented results cannot be

transferred to an analysis of single years. On a yearly basis, in some years the annual

cycle of surface EKE is anti-correlated to e.g. wind stress, as expected, while in other

years, the seasonal cycle of EKE is in phase with that of the wind stress. Figure 29

exemplarily shows two different years (1995 (a) and 2005 (b)) from the Kuroshio region.

In 1995, the surface EKE is similar to the time-mean seasonal cycle (Fig. 16) with

a summer maximum and low levels of EKE during the winter, when the wind stress is

large. Contrary, in 2005 the annual cycles of wind stress and EKE are in phase. Although

the seasonal cycle of wind stress is almost identical to the one in 1995, the surface EKE

does not respond to this cycle, showing maximal EKE in winter and low EKE in summer.

This illustrates the complexity of generation and dissipation mechanisms for EKE and

emphasizes the need of long time series to produce robust results when studying EKE,

especially in highly energetic regions. Additionally, figure 29 shows that the presented

results should not be transferred to isolated events or periods.

6 Summary and Conclusion

Using the ORCA12 global ocean model with a resolution of 1/12◦, the aim of this thesis

was to study the temporal variability, especially the seasonal cycle, of surface Eddy

Kinetic Energy.

First, the reference period to which the deviations from the mean horizontal veloc-

ities u and v should be calculated was discussed. It was shown, that the choice of the

whole available time span as a reference period leads to an overestimation of EKE (Fig.

1), as variations of u and v on internannual time scales are regarded as deviations from

the mean. As the EKE is the mesoscale variability with time scales of weeks to months,

this needs to be avoided. Further investigations showed a reference to yearly mean u and

v to be sufficient. This still includes possible contributions of seasonal cycles of u and v to

the EKE, but these influences seem to be negligible (Fig. 2). Additionally, a distinction

59



of mesoscale variability with time scales of a few months from a mean seasonal cycle in

u and v is not possible, so one year mean u and v are favourable.

Also in section 3, it has been proven that, while the differences between the surface

EKE calculated from geostrophic currents and the total surface EKE are considerably

large (up to ∼ 100cm2s−2) in high energy regions such as the GS, Kuroshio, ACC etc.

(Fig. 3), the annual cycle is not influenced significantly (Fig. 4). It is therefore reason-

able to compare seasonal cycles derived from geostrophic velocities (e.g. from satellite

altimetry) to total surface EKE from the model.

Comparison of the ORCA12 model output with AVISO satellite altimetry data

revealed, it is not only methodologically reasonable to compare them but indeed the

model reproduces the observed mesoscale variability. Both, the SSH variance (Fig. 5

and 6) and the mean EKE (Fig. 7 and 8), are similar in major parts of the Atlantic and

Pacific Oceans. Regional differences include the displacement of the separation points of

the NH WBCs by roughly 2◦ to the north in ORCA12 compared to AVISO. Additionally,

extrema are not as pronounced in ORCA12, while the regions with medium EKE levels

are comparable between ORCA12 and AVISO. Crucial for the further discussion about

the temporal variability of EKE, the amplitude and phase of the mean seasonal cycle

of surface EKE in AVISO and ORCA12 show great agreement. As the mean EKE, the

amplitude of the seasonal cycle (Fig. 9 and 10) is slightly too low in high energy regions

but ORCA12 has an intriguingly good representation of the phase of the seasonal cycle

in all regions of interest here (Fig. 11 and 12). Both hemisphere’s subtropical gyres

have a maximum EKE in the summer months with slight modifications depending on the

exact latitude. Furthermore, regions showing no significant seasonal cycle in ORCA12

coincide with regions exhibiting a spatially inhomogeneous distribution of the phase of

the seasonal cycle in AVISO. Based on the amplitudes and the spatial homogeneity of

the seasonal cycle, six regions where chosen for detailed investigations: The Gulf Stream

and Kuroshio regions with their high EKE levels and the adjacent regions in the western

interior of the NH subtropical gyres of the Atlantic and Pacific and their SH counterparts.

The most energetic areas in the GS and Kuroshio are located in the western parts

(Fig. 13), close to their separation points, with mean EKE > 2000cm2s−2 and amplitudes
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of the seasonal cycle > 500cm2s−2. The eastward extend of mean EKE levels between

500cm2s−2 and 1000cm2s−2 and amplitudes > 100cm2s−2 is 40◦W in the GS and 175◦E

in the Kuroshio. Concerning the phase of the seasonal cycle, the WBCs have some

very local, distinct features separating them from the surrounding regions. Coinciding

with mean EKE levels > 1000cm2s−2 near the axis of the GS and Kuroshio systems, a

maximum of the seasonal cycle in winter/spring is evident, with spring maxima to the

south and a gradual shift to winter maxima towards the north (Fig. 13 and 14). Averaged

over the region though, these maxima are associated with small amplitudes relative to

the mean EKE and the interannual variability of the seasonal cycle is large, especially

in the Kuroshio (Fig. 16). Although a bias from calculating EKE with respect to yearly

mean u and v could be ruled out as the source for an altered seasonal cycle of EKE in

the Gulf Stream region in general in section 3, in such localized features, the seasonal

cycle of u and v could be misinterpreted as EKE. Additionally, a meridional shift of the

WBCs with the seasons could lead to such a seasonal cycle. Another possible solution

for this small regional spring/winter maximum in EKE is the EKE generation peaking

in winter. Zhai et al. (2008) estimate the EKE production to be highest in winter in the

GS and explain the general summer phase with energy dissipation also being largest in

winter. In the core regions of the WBCs however, EKE production in winter could be

very large with the effect of dissipation not being sufficient to impose its seasonal cycle.

While away from the cores of the WBCs, the dissipation, especially through wind stress,

is similar and the EKE production is significantly smaller, allowing the dissipation to be

the driving factor in the seasonal cycle. Thus, outside these most energetic core regions

the maximum of the seasonal cycle is located in the summer months in the vicinity of

the WBCs, with a small shift towards September downstream.

Just adjacent to the WBC regions, the NH western interior subtropical gyres also

exhibit maximal surface EKE in summer (Jun.-Aug.). The spatial distribution of the

phase of the seasonal cycle in these regions is rather homogeneous and very similar be-

tween Atlantic (Fig. 17 and 19) and Pacific (Fig. 18 and 20), even though the two regions

show different dynamical settings. In the NP the Subtropical Counter Current lies within

the inspected region, while in the NA no such current band is present. Generally, the

61



mean EKE in the NA and NP ranges between 30cm2s−2 and 100cm2s−2 with amplitudes

of the seasonal cycle of the same magnitude in the NP and 5cm2s−2 − 30cm2s−2 in the

NA.

The SA and SP exhibit similar behaviour. Mean EKE in the SA is 10cm2s−2 −
50cm2s−2 and in the SP 10cm2s−2 − 100cm2s−2 with an equatorward band of high EKE,

as in the NP. The seasonal cycle in the SH also exhibits strong similarity to the NH with

amplitudes slightly higher in the Pacific compared to the Atlantic and a general summer

maximum (Nov.-Feb.).

After evaluating the model’s performance and describing the seasonal cycles of sur-

face EKE in the several regions, three mechanisms were tested for their probability of

being the source of seasonal variability of EKE. Two of these mechanisms focus on dis-

sipation processes acting upon the EKE at the sea surface. During the winter months,

large heat fluxes from the ocean to the atmosphere, especially in the WBC regions, dissi-

pate EKE in the surface Mixed Layer, while the seasonal thermocline with a very strong

stratification near the surface decouples the EKE from atmospheric forcing in summer

(Zhai and Greatbatch, 2006b). To assess this mechanism, the difference of potential den-

sity between 160m depth and the surface was used as an indicator for the strength of

the stratification and therefore the decoupling of EKE from the atmosphere. The other

possible dissipation mechanism is the wind work. As wind speeds at midlatitudes are

much larger in winter compared to summer, the effect of wind and the associated wind

stress and work on the ocean is larger in winter as well. Furthermore, wind work acts as a

damping on EKE. This damping is introduced by effects of the relative velocity between

the atmospheric winds and oceanic currents (Zhai and Greatbatch, 2007). The possible

effect of wind stress on EKE was tested by inspection of the annual cycles of wind stress.

The third proposed mechanism is not a dissipation process, but a generation process lo-

cated in the near-surface ocean. Local instabilities caused by a vertical shear of horizontal

velocities at the base of the Mixed Layer are thought to generate surface-intensified EKE

(Beckmann et al., 1994). The role of this shear instabilities in producing a seasonal cycle

in surface EKE was tested by investigations of the vertical shear of velocities and the

vertical structure of EKE in the top 500m of the water column.
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In the WBC regions, the hypothesis of dissipation mechanisms being responsible

for the observed seasonal variations in surface EKE (Zhai et al., 2008) can be supported.

In both regions, the GS and the Kuroshio, wind stress peaks in the winter months with

considerable strength of up to 0.2Nm−2, accompanied by a weak stratification (Fig. 26).

A combination of wind work and thermal dissipation results in a significant damping of

surface EKE in winter, leading to enhanced EKE levels in the summer months. This

was supported by an investigation of the annual cycle of EKE at 100m depth, showing

reduced or absent seasonal variations of EKE, compared to the surface (Fig. 28). In

the WBCs, the generation of EKE exhibits only a weak maximum in winter (Zhai et al.,

2008) which should result in almost constant surface EKE throughout the year. This

seasonally constant EKE is then altered in the near-surface layers by dissipation processes

originating in the overlying atmosphere. Nevertheless, in the chaotic WBC regimes,

the actual balance of EKE generation and dissipation varies largely from year to year,

resulting in differing seasonal cycles (Fig. 29). Only averaged over a sufficiently long

period, the above mentioned processes are able to explain the observed seasonal cycle.

An investigation of the vertical shear of velocities in the WBCs has not been undertaken in

this study as this simplified view could not account for the various processes of baroclinic

and barotropic instabilities responsible for EKE production in these regions.

In the subtropical gyres, the seasonal cycles of wind stress vary greatly between

different regions. While in some areas of the gyres (e.g. the northern parts of the NH

subtropical gyres), the phase of the seasonal cycle of wind stress is suitable to explain

the annual variations in EKE through the proposed process, in other areas there is no

annual cycle in wind stress or the wind stress is in phase with the annual cycle of surface

EKE (Fig. 21). The surface EKE however peaks in summer everywhere, leading to the

conclusion that the dissipation through wind stress cannot generally explain the seasonal

cycle of EKE in the subtropical gyres. Additionally, it has to be kept in mind that the

wind stress is much weaker in the subtropics compared to the midlatitude WBC regions,

reducing the possible impact on EKE. The same holds for damping through thermal

interactions with the atmosphere. Surface intensified changes in EKE can be induced

by variations in the dissipation time scales in the Southern Ocean (Zhai and Munday,
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2014). In the subtropics however, while the seasonal cycle of the stratification is roughly

in agreement with the cycle needed to explain the proposed damping process, the heat

fluxes from the ocean to the atmosphere could be too small to sufficiently decrease surface

EKE. A further, more detailed investigation of heat fluxes and associated dissipation in

the subtropical gyres is needed to confirm this, though.

The suitability of the two proposed dissipation mechanisms to explain the observed

annual cycle of surface EKE in the subtropical gyres is questionable. Therefore, a third

hypothesis was tested. Baroclinic instability at the base of the Mixed Layer is thought

to locally generate EKE in the subtropical gyres (Beckmann et al., 1994). To support

this hypothesis, the annual cycle of vertical shear of horizontal velocity and profiles of

this velocity as well as EKE were investigated. The vertical shear of the mean flow was

found to have no significant seasonal cycle below 50m depth (Fig. 22). In the top 50m of

the water column however, the vertical shear exhibits a strong seasonal cycle that peaks

in summer in all investigated regions. As this annual cycle of vertical shear is in phase

with the seasonal variations of surface EKE, some form of connection can be assumed. A

detailed inspection of vertical profiles of horizontal velocity (Fig. 23) revealed, that the

location of the largest vertical shear is indeed correlated to the depth of the base of the

Mixed Layer. In summer, the maximal shear is found in the surface layers, whereas in

winter it is located between 100m and 200m depth. Comparing these profiles of velocity

with profiles of EKE (Fig. 25) further showed the EKE also to be surface intensified, with

absent seasonal variations below 300m, but drastically increasing variability towards the

surface. Therefore, it is likely that the vertical shear found near-surface in summer makes

the flow unstable, generating EKE. In the winter months though, there is no substantial

vertical shear found in the entire water column. Thus, a background EKE field present

in the subtropical gyres seems probable. Superimposed on this background field, there

is local production of EKE through baroclinic instabilities associated with the Mixed

Layer in summer. Although this hypothesis seems reasonable, it is also possible that

some factors not accounted for in this study or some processes not yet understood play

a role in determining the seasonal cycle of EKE in the subtropical gyres. Furthermore,

for the subtropical gyres, this hypothesis could only explain the seasonal cycle of near-
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surface EKE. The source of EKE in general remains unknown and with surface processes

determining the surface EKE in both, the WBCs and the subtropical gyres, will remain

hard to determine. One possibility is, that EKE is generated in rather strong currents

with no seasonal variations and then radiates into the rest of the basin. In the WBCs the

wind stress and thermal capping then determines the seasonal cycle, while in the interior

of the gyres locally generated near-surface EKE is the source of the annual variations of

surface EKE. On the other hand, the source of EKE at depth could be local instability

almost everywhere (Arbic, 2000).

It becomes clear, while supporting some hypotheses previously made by other au-

thors, this study cannot give clear answers to many of the questions stated at the be-

ginning. One of the most important findings is the ability of the model to successfully

reproduce the distribution of surface EKE and its seasonal variations in great detail.

Based on this result, many investigations focussed on various aspects of this study can

be planned and conducted in the future. The different dissipation mechanisms should

be tested in greater detail with specially designed model runs. A model run with no

seasonal variations in the wind field for example could determine the effect of the wind

stress on surface EKE. The same could be done for the thermal interactions with the

atmosphere. In the current model, the heat fluxes are based on bulk formulae not ac-

counting for the actual ocean temperatures. Implementing heat fluxes which consider

the feedback of ocean temperature onto the atmosphere could be used and altered to

inspect the resulting variations in EKE. Another crucial point to be focussed on in future

research is the vertical shear associated with the Mixed Layer. A more robust inspection

of the vertical profiles of velocities should be undertaken in order to determine vertical

shear modes found in the subtropical gyres and test them for stability.

Additionally to these more detailed persuasion of the aims of this study, the same

or similar investigations should also be conducted for other regions, extended to the

deep ocean or focussed on other time scales to gain better insight into the generation,

dissipation and modulation of EKE.

65



Bibliography

Adamec, D. (1998). Modulation of the seasonal signal of the Kuroshio Extension during

1994 from satellite data. Journal of Geophysical Research, 103, No. C5. 10209-10222.

Arbic, B. K. (2000). Generation of Mid-Ocean Eddies: The Local Baroclinic Instabil-

ity Hypothesis. PhD thesis, Massachusetts Institute of Technology and Woods Hole

Oceanographic Institution.

AVISO (02.08.2014). http://www.aviso.altimetry.fr/en/missions.html.

Barnier, B., Madec, G., Penduff, T., Molines, J.-M., Treguier, A.-M., Le Sommer, J.,
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Appendix

I The Fitting Method

A sin(x) + B cos(x) + C = y

where x =
t
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√
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let φ = arctan(
B

A
) and D =

√
A2 +B2

D(sin(x) cos(φ) + cos(x) sin(φ)) + C = y

where x = t
12

D sin(
t

12
+ φ) + C = y

So A sin(x) + B cos(x) + C = y is a sine with amplitude D =
√
A2 +B2 and phase

φ = arctan(
B

A
). This form offers advantages, as A and B can be spatially averaged,

whereas averaging φ of several gridpoints can lead to unwanted results. For example,

when averaging two points in space, one with a phase of November, one with January,

the intuitive average would be December. Averaging phases of 15◦ and 330◦ (roughly

corresponding to January and November) however, yields a phase of 172.5◦, which roughly

corresponds to July.
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II Python Script for Regridding and Calculations
File: /home/jkr/Uni/Master/Link to Master_Thesis/scripts/pyeke.py Page 1 of 3

#
# this script regrids ORCA U and V grid data to T grid data and
# calulates EKE and tau at the surface, vertical shear and potential
# density, input has to have time dimension length 1!
#
# eight input arguments are needed
# 1: netcdf file containing U and utau
# 2: netcdf file containing V and vtau
# 3: netcdf file containing mean U, to which 
#           deviations should be calculated for EKE
# 4: same as 3, but for V
# 5: netcdf file with T,S and the T grid coordinates
# 6: output file name for EKE and tau on horizontal T grid at z=0
# 7: output file name for veritcal shear on horizontal T grid
#           and vertical interpolated grid 
# 8: output file name for potential density on horizontal 
#           and vertical T grid
#
# import required modules
import numpy as np
from netCDF4 import Dataset as nc
from seawater import csiro as sea
import sys
#
# fetching input arguments
input1=sys.argv[1]
input2=sys.argv[2]
input3=sys.argv[3]
input4=sys.argv[4]
input5=sys.argv[5]
input6=sys.argv[6]
input7=sys.argv[7]
input8=sys.argv[8]
#
# extract variables from netcdf files
uin=nc.netcdf_file(input1,'r')
u=uin.variables['vozocrtx'][:]       # U
utau=uin.variables['vozotaux'][:]    # utau
uin.close()
vin=nc.netcdf_file(input3,'r')
v=vin.variables['vomecrty'][:]       # V
vtau=vin.variables['vometauy'][:]    # vtau
vin.close()
u_in=nc.netcdf_file(input2,'r')
u_=u_in.variables['vozocrtx'][:]     # mean U
u_in.close()
v_in=nc.netcdf_file(input4,'r')
v_=v_in.variables['vomecrty'][:]     # mean V
timein=v_in.variables['time'][:]     # time (could be extracted from 
v_in.close()                         # any other input file as well
t=nc.netcdf_file(input5,'r')
nav_latin=t.variables['nav_lat'][:]  # T grid latitude
nav_lonin=t.variables['nav_lon'][:]  # T grid longitude
depthtin=t.variables['deptht'][:]    # T grid depth
temp=t.variables['votemper'][:]      # temperature
sal=t.variables['vosaline'][:]       # salinity
t.close()
#
# depth array, define 3-d depth array with same dimensions as T,S etc
D=np.ma.empty_like(u)
for i in np.arange(0,20):
   D[i,:,:]=depthtin[i]

#
# eke calculation
# first calculate deviations from the mean
udev=u_-u
vdev=v_-v
#
# interpolate u_dev and v_dev to T grid (averaging U(i-1) and U(i)
# gives U at T grid point i etc)
# insert columns of zeros at the end (u_dev1) and beginning (u_dev2)
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# of u_dev to shift u_dev2 by one column, then average u_dev1(i) and 
# u_dev2(i).
u_dev1=np.insert(u_dev, np.shape(nav_lat)[1], 0, axis=3)
u_dev2=np.insert(u_dev, 0, 0, axis=3)
#
# the same for v_dev, but here shift one row
v_dev1=np.insert(v_dev, np.shape(nav_lat)[0], 0, axis=2)
v_dev2=np.insert(v_dev, 0, 0, axis=2)
#
# averaging and cutting away first and last rows and columns
# to get rid of spurious grid points
udev_t=0.5*(u_dev1+u_dev2)[:,:,1:np.shape(nav_lat)[0],1:-1]
vdev_t=0.5*(v_dev1+v_dev2)[:,:,1:-1,1:np.shape(nav_lat)[1]]
#
# then calculate eke on the T grid
eke_t=0.5*((udev_t*udev_t)+(vdev_t*vdev_t))
#
# same procedure for the windstress calculation
utau1=np.insert(utau, np.shape(nav_lat)[1], 0, axis=2)
utau2=np.insert(utau, 0, 0, axis=1)
vtau1=np.insert(vtau, np.shape(nav_lat)[0], 0, axis=1)
vtau2=np.insert(vtau, 0, 0, axis=0)
utau_t=0.5*(utau1+utau2)[:,1:np.shape(nav_lat)[0],1:-1]
vtau_t=0.5*(vtau1+vtau2)[:,1:-1,1:np.shape(nav_lat)[1]]
#
# calculating the absolute windstress on the T grid
tau_t=np.ma.sqrt((utau_t*utau_t)+(vtau_t*vtau_t))
#
# calculate potential density with the seawater library
# first define a pressure array
P=sea.pres(D,nav_latin)
potT=sea.ptmp(sal,temp,P,0.) # potential temperature
potD=sea.dens(sal,potT,P)    # potential density
#
# calculate vertical shear
# first regrid to the T grid as before
u1=np.insert(u, np.shape(nav_lat)[1], 0, axis=3)
u2=np.insert(u, 0, 0, axis=3)
v1=np.insert(v, np.shape(nav_lat)[0], 0, axis=2)
v2=np.insert(v, 0, 0, axis=2)
u_t=0.5*(u1+u2)[:,:,1:np.shape(nav_lat)[0],1:-1]
v_t=0.5*(v1+v2)[:,:,1:-1,1:np.shape(nav_lat)[1]]
#
# calculate the speed
vel=np.ma.sqrt((u_t*u_t)+(v_t*v_t))
#
# now doing the regridding for the vertical grid
# because du/dz points lie in between the T grid depth
vel1=np.insert(vel, 0, 0, axis=0)
vel2=np.insert(vel, 46, 0, axis=0)
depth1=np.insert(D, 0, 0, axis=0)
depth2=np.insert(D, 46, 0, axis=0)
d1=np.insert(depthtin, 0, 0, axis=0)
d2=np.insert(depthtin, 46, 0, axis=0)
#
# calculating Du/dz
she=((vel1-vel2)/(depth1*(-1.)-depth2*(-1.)))[1:-1,:,:]
#
# and interpolate the depth vector
shedepth=0.5*(d1+d2)[1:-1]
#
# finally, creating the output variables with the names
# defined in the input arguments
# first, create the netcdf file for eke and tau
out=nc.netcdf_file(input6,'w')
#
# create the dimensions
out.createDimension('deptht',46)
out.createDimension('y',np.shape(udev)[2])
out.createDimension('x',np.shape(udev)[3])
out.createDimension('time',1)
#
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# create variables and then write data to them
deptht=out.createVariable('deptht','d',('deptht',))
deptht[:]=depthtin
nav_lat=out.createVariable('nav_lat','d',('y', 'x',))
nav_lat[:]=nav_latin[1:np.shape(potT)[0],1:np.shape(potT)[1]]
nav_lon=out.createVariable('nav_lon','d',('y', 'x',))
nav_lon[:]=nav_lonin[1:np.shape(potT)[0],1:np.shape(potT)[1]]
time=out.createVariable('time','d',('time',))
time[:]=timein
eke=out.createVariable('eke','d',('time','deptht','y','x',))
eke[:]=eke_t
tau_T=out3.createVariable('tau','d',('time','y','x',))
tau_T[:]=tau_t
out.close()
#
# netcdf file for the vertical shear 
out2=nc(input7,'w')
#
# create the dimensions
out2.createDimension('y',np.shape(she)[0])
out2.createDimension('x',np.shape(she)[1])
out2.createDimension('time',1)
out2.createDimension('depthtdz',45)
#
# create variables and then write data to them
depthtdz=out2.createVariable('depthtdz','d',('depthtdz',))
depthtdz[:]=shedepth
nav_lat=out2.createVariable('nav_lat','d',('y', 'x',))
nav_lat[:]=nav_latin[1:np.shape(potT)[0],1:np.shape(potT)[1]]
nav_lon=out2.createVariable('nav_lon','d',('y', 'x',))
nav_lon[:]=nav_lonin[1:np.shape(potT)[0],1:np.shape(potT)[1]]
time=out2.createVariable('time','d',('time',))
time[:]=timein
vertshear=out2.createVariable('vertshear','d',('time','depthtdz','y','x',))
vertshear[:]=she
out2.close()
#
# and the netcdf file for potential temperature and density 
out3=nc(input8,'w')
#
# create the dimensions
out3.createDimension('y',np.shape(potT)[0])
out3.createDimension('x',np.shape(potT)[1])
out3.createDimension('time',1)
out3.createDimension('deptht',46)
#
# create variables and then write data to them
deptht=out3.createVariable('deptht','d',('deptht',))
deptht[:]=depthtin
nav_lat=out3.createVariable('nav_lat','d',('y', 'x',))
nav_lat[:]=nav_latin
nav_lon=out3.createVariable('nav_lon','d',('y', 'x',))
nav_lon[:]=nav_lonin
time=out3.createVariable('time','d',('time',))
time[:]=timein
potT_T=out3.createVariable('potT_T','d',('time','deptht','y','x',))
potT_T[:]=potT
potD_T=out3.createVariable('potD_T','d',('time','deptht','y','x',))
potD_T[:]=potD
out.close()
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