2,074 research outputs found

    Self-Calibrated Warping for Mass Spectra Alignment

    Get PDF
    With recent advances in mass spectrometry (MS) technologies, it is now possible to study protein profiles over a wide range of molecular weights in small biological specimens. However, MS spectra are usually not aligned or synchronized between samples. To ensure the consistency of the subsequent analysis, spectrum alignment is necessary to align the spectra such that the same biological entity would show up at the same m/z value for different samples. Although a variety of alignment algorithms have been proposed in the past, most of them are developed based on chromatographic data and do not address some of the unique characteristics of the serum or other body fluid MS data. In this work, we propose a self-calibrated warping (SCW) algorithm to address some of the challenges associated with serum MS data alignment. In addition, we compare the proposed algorithm with five existing representative alignment methods using a clinical surface enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS) data set

    Behavioral Mechanisms, Elevated Depressive Symptoms, and the Risk for Myocardial Infarction or Death in Individuals With Coronary Heart Disease The REGARDS (Reason for Geographic and Racial Differences in Stroke) Study

    Get PDF
    ObjectivesThe aim of this study was to determine whether behavioral mechanisms explain the association between depressive symptoms and myocardial infarction (MI) or death in individuals with coronary heart disease (CHD).BackgroundDepressive symptoms are associated with increased morbidity and mortality in individuals with CHD, but it is unclear how much behavioral mechanisms contribute to this association.MethodsThe study included 4,676 participants with a history of CHD. Elevated depressive symptoms were defined as scores ≥4 on the Center for Epidemiologic Studies Depression 4-item Scale. The primary outcome was definite/probable MI or death from any cause. Incremental proportional hazards models were constructed by adding demographic data, comorbidities, and medications and then 4 behavioral mechanisms (alcohol use, smoking, physical inactivity, and medication non-adherence).ResultsAt baseline, 638 (13.6%) participants had elevated depressive symptoms. Over a median 3.8 years of follow up, 125 of 638 (19.6%) participants with and 657 of 4,038 (16.3%) without elevated depressive symptoms had events. Higher risk of MI or death was observed for elevated depressive symptoms after adjusting for demographic data (hazard ratio [HR]: 1.41, 95% confidence interval [CI]: 1.15 to 1.72) but was no longer significant after adjusting for behavioral mechanisms (HR: 1.14, 95% CI: 0.93 to 1.40). The 4 behavioral mechanisms together significantly attenuated the risk for MI or death conveyed by elevated depressive symptoms (−36.9%, 95% CI: −18.9 to −119.1%), with smoking (−17.6%, 95% CI: −6.5% to −56.0%) and physical inactivity (−21.0%, 95% CI: −9.7% to −61.1%) having the biggest explanatory roles.ConclusionsOur findings suggest potential roles for behavioral interventions targeting smoking and physical inactivity in patients with CHD and comorbid depression

    Genetic identity, biological phenotype, and evolutionary pathways of transmitted/founder viruses in acute and early HIV-1 infection

    Get PDF
    Identification of full-length transmitted HIV-1 genomes could be instrumental in HIV-1 pathogenesis, microbicide, and vaccine research by enabling the direct analysis of those viruses actually responsible for productive clinical infection. We show in 12 acutely infected subjects (9 clade B and 3 clade C) that complete HIV-1 genomes of transmitted/founder viruses can be inferred by single genome amplification and sequencing of plasma virion RNA. This allowed for the molecular cloning and biological analysis of transmitted/founder viruses and a comprehensive genome-wide assessment of the genetic imprint left on the evolving virus quasispecies by a composite of host selection pressures. Transmitted viruses encoded intact canonical genes (gag-pol-vif-vpr-tat-rev-vpu-env-nef) and replicated efficiently in primary human CD4+ T lymphocytes but much less so in monocyte-derived macrophages. Transmitted viruses were CD4 and CCR5 tropic and demonstrated concealment of coreceptor binding surfaces of the envelope bridging sheet and variable loop 3. 2 mo after infection, transmitted/founder viruses in three subjects were nearly completely replaced by viruses differing at two to five highly selected genomic loci; by 12–20 mo, viruses exhibited concentrated mutations at 17–34 discrete locations. These findings reveal viral properties associated with mucosal HIV-1 transmission and a limited set of rapidly evolving adaptive mutations driven primarily, but not exclusively, by early cytotoxic T cell responses

    Evolutionary Genetics of an S-Like Polymorphism in Papaveraceae with Putative Function in Self-Incompatibility

    Get PDF
    Papaver rhoeas possesses a gametophytic self-incompatibility (SI) system not homologous to any other SI mechanism characterized at the molecular level. Four previously published full length stigmatic S-alleles from the genus Papaver exhibited remarkable sequence divergence, but these studies failed to amplify additional S-alleles despite crossing evidence for more than 60 S-alleles in Papaver rhoeas alone.Using RT-PCR we identified 87 unique putative stigmatic S-allele sequences from the Papaveraceae Argemone munita, Papaver mcconnellii, P. nudicuale, Platystemon californicus and Romneya coulteri. Hand pollinations among two full-sib families of both A. munita and P. californicus indicate a strong correlation between the putative S-genotype and observed incompatibility phenotype. However, we also found more than two S-like sequences in some individuals of A. munita and P. californicus, with two products co-segregating in both full-sib families of P. californicus. Pairwise sequence divergence estimates within and among taxa show Papaver stigmatic S-alleles to be the most variable with lower divergence among putative S-alleles from other Papaveraceae. Genealogical analysis indicates little shared ancestral polymorphism among S-like sequences from different genera. Lack of shared ancestral polymorphism could be due to long divergence times among genera studied, reduced levels of balancing selection if some or all S-like sequences do not function in incompatibility, population bottlenecks, or different levels of recombination among taxa. Preliminary estimates of positive selection find many sites under selective constraint with a few undergoing positive selection, suggesting that self-recognition may depend on amino acid substitutions at only a few sites.Because of the strong correlation between genotype and SI phenotype, sequences reported here represent either functional stylar S-alleles, tightly linked paralogs of the S-locus or a combination of both. The considerable complexity revealed in this study shows we have much to learn about the evolutionary dynamics of self-incompatibility systems

    Genome-Wide Association Study Identifies Single Nucleotide Polymorphism in DYRK1A Associated with Replication of HIV-1 in Monocyte-Derived Macrophages

    Get PDF
    Background: HIV-1 infected macrophages play an important role in rendering resting T cells permissive for infection, in spreading HIV-1 to T cells, and in the pathogenesis of AIDS dementia. During highly active anti-retroviral treatment (HAART), macrophages keep producing virus because tissue penetration of antiretrovirals is suboptimal and the efficacy of some is reduced. Thus, to cure HIV-1 infection with antiretrovirals we will also need to efficiently inhibit viral replication in macrophages. The majority of the current drugs block the action of viral enzymes, whereas there is an abundance of yet unidentified host factors that could be targeted. We here present results from a genome-wide association study identifying novel genetic polymorphisms that affect in vitro HIV-1 replication in macrophages. Methodology/Principal Findings: Monocyte-derived macrophages from 393 blood donors were infected with HIV-1 and viral replication was determined using Gag p24 antigen levels. Genomic DNA from individuals with macrophages that had relatively low (n = 96) or high (n = 96) p24 production was used for SNP genotyping with the Illumina 610 Quad beadchip. A total of 494,656 SNPs that passed quality control were tested for association with HIV-1 replication in macrophages, using linear regression. We found a strong association between in vitro HIV-1 replication in monocyte-derived macrophages and SNP rs12483205 in DYRK1A (p = 2.16×10-5). While the association was not genome-wide significant (p<1×10-7), we could replicate this association using monocyte-derived macrophages from an independent group of 31 individuals (p = 0.0034). Combined analysis of the initial and replication cohort increased the strength of the association (p = 4.84×10-6). In addition, we found this SNP to be associated with HIV-1 disease progression in vivo in two independent cohort studies (p = 0.035 and p = 0.0048). Conclusions/Significance: These findings suggest that the kinase DYRK1A is involved in the replication of HIV-1, in vitro in macrophages as well as in vivo. © 2011 Bol et al

    Searches for Neutrinos from Gamma-Ray Bursts using the IceCube Neutrino Observatory

    Get PDF
    Gamma-ray bursts (GRBs) are considered as promising sources of ultra-high-energy cosmic rays (UHECRs) due to their large power output. Observing a neutrino flux from GRBs would offer evidence that GRBs are hadronic accelerators of UHECRs. Previous IceCube analyses, which primarily focused on neutrinos arriving in temporal coincidence with the prompt gamma rays, found no significant neutrino excess. The four analyses presented in this paper extend the region of interest to 14 days before and after the prompt phase, including generic extended time windows and targeted precursor searches. GRBs were selected between May 2011 and October 2018 to align with the data set of candidate muon-neutrino events observed by IceCube. No evidence of correlation between neutrino events and GRBs was found in these analyses. Limits are set to constrain the contribution of the cosmic GRB population to the diffuse astrophysical neutrino flux observed by IceCube. Prompt neutrino emission from GRBs is limited to \lesssim1% of the observed diffuse neutrino flux, and emission on timescales up to 10410^4 s is constrained to 24% of the total diffuse flux

    Searches for Neutrinos from Gamma-Ray Bursts Using the IceCube Neutrino Observatory

    Get PDF
    Gamma-ray bursts (GRBs) are considered as promising sources of ultra-high-energy cosmic rays (UHECRs) due to their large power output. Observing a neutrino flux from GRBs would offer evidence that GRBs are hadronic accelerators of UHECRs. Previous IceCube analyses, which primarily focused on neutrinos arriving in temporal coincidence with the prompt gamma-rays, found no significant neutrino excess. The four analyses presented in this paper extend the region of interest to 14 days before and after the prompt phase, including generic extended time windows and targeted precursor searches. GRBs were selected between 2011 May and 2018 October to align with the data set of candidate muon-neutrino events observed by IceCube. No evidence of correlation between neutrino events and GRBs was found in these analyses. Limits are set to constrain the contribution of the cosmic GRB population to the diffuse astrophysical neutrino flux observed by IceCube. Prompt neutrino emission from GRBs is limited to ≲1% of the observed diffuse neutrino flux, and emission on timescales up to 104^{4} s is constrained to 24% of the total diffuse flux

    Search for exotic resonances decaying into WZ/ZZ in pp collisions at √s=7 TeV

    Get PDF
    Journal of High Energy Physics 2013.2 (2013): 036 reproduced by permission of Scuola Internazionale Superiore di Studi Avanzati (SISSA)Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UAMA search for new exotic particles decaying to the VZ final state is performed, where V is either a W or a Z boson decaying into two overlapping jets and the Z decays into a pair of electrons, muons or neutrinos. The analysis uses a data sample of pp collisions corresponding to an integrated luminosity of 5 fb-1 collected by the CMS experiment at the LHC at √s=7 TeV in 2011. No significant excess is observed in the mass distribution of the VZ candidates compared with the background expectation from standard model processes. Model-dependent upper limits at the 95% confidence level are set on the product of the cross section times the branching fraction of hypothetical particles decaying to the VZ final state as a function of mass. Sequential standard model W′ bosons with masses between 700 and 940 GeV are excluded. In the Randall-Sundrum model for graviton resonances with a coupling parameter of 0.05, masses between 750 and 880 GeV are also exclude

    Recent Progress in Solar Atmospheric Neutrino Searches with IceCube

    Get PDF
    Cosmic-rays interacting with nucleons in the solar atmosphere produce a cascade of particles that give rise to a flux of high-energy neutrinos and gamma-rays. Fermi has observed this gamma-ray flux; however, the associated neutrino flux has escaped observation. In this contribution, we put forward two strategies to detect these neutrinos, which, if seen, would push forward our understanding of the solar atmosphere and provide a new testing ground of neutrino properties. First, we will extend the previous analysis, which used high-energy through-going muon events collected in the years of maximum solar activity and yielded only flux upper limits, to include data taken during the solar minima from 2018 to 2020. Extending the analysis to the solar minima is important as the gamma-ray data collected during past solar cycles indicates a possible enhancement in the high-energy neutrino flux. Second, we will incorporate sub-TeV events and include contributions from all neutrino flavors. These will improve our analysis sensitivity since the solar atmospheric spectrum is soft and, due to oscillation, contains significant contributions of all neutrino flavors. As we will present in this contribution, these complementary strategies yield a significant improvement in sensitivity, making substantial progress towards observing this flux
    corecore