62 research outputs found
Rapid parallel adaptation despite gene flow in silent crickets
The work was funded by Natural Environment Research Council awards to N.W.B. [NE/I027800/1, NE/L011255/1]. Bioinformatics support was provided by a Wellcome Trust ISSF award [105621/Z/14/Z]. X.Z. was supported by a China Scholarship Council PhD studentship [201703780018].Gene flow is predicted to impede parallel adaptation via de novo mutation, because it can introduce pre-existing adaptive alleles from population to population. We test this using Hawaiian crickets (Teleogryllus oceanicus) in which ‘flatwing’ males that lack sound-producing wing structures recently arose and spread under selection from an acoustically-orienting parasitoid. Morphometric and genetic comparisons identify distinct flatwing phenotypes in populations on three islands, localized to different loci. Nevertheless, we detect strong, recent and ongoing gene flow among the populations. Using genome scans and gene expression analysis we find that parallel evolution of flatwing on different islands is associated with shared genomic hotspots of adaptation that contain the gene doublesex, but the form of selection differs among islands and corresponds to known flatwing demographics in the wild. We thus show how parallel adaptation can occur on contemporary timescales despite gene flow, indicating that it could be less constrained than previously appreciated.Publisher PDFPeer reviewe
A silent orchestra: convergent song loss in Hawaiian crickets is repeated, morphologically varied, and widespread
Host-parasite interactions are predicted to drive the evolution of defences and counter-defences, but the ability of either partner to adapt depends on new and advantageous traits arising. The loss of male song in Hawaiian field crickets (Teleogryllus oceanicus) subject to fatal parasitism by eavesdropping flies (Ormia ochracea) is a textbook example of rapid evolution in one such arms race. Male crickets ordinarily sing to attract females by rubbing their forewings together, which produces sound by exciting acoustic resonating structures formed from modified wing veins (‘normal-wing’). The resulting song is the target of strong sexual selection by conspecific females. However, male song also attracts female flies that squirt larvae onto males or nearby female crickets; the larvae then burrow into, consume, and ultimately kill the host. The flies thus impose strong natural selection on male song, producing silent males, which have spread rapidly in populations on two islands – Kauai and Oahu. On both islands, song loss is caused by genetic mutations that drastically reduce or eliminate sound-producing structures on the male forewing by feminising wing venation – these males are called ‘flatwing’. On recent visits to parasitized cricket populations, we discovered two additional wing phenotypes – ‘small-wing’ and ‘curly-wing’. These two phenotypes differ noticeably from flatwing, and from each other, but all have the effect of eliminating or reducing acoustic signals that attract the parasitoid fly. These discoveries illustrate how the evolutionary process can repeatedly, and through a remarkable variety of independent mechanisms, drive adaptation to the same selection pressure
Temporal genomics in Hawaiian crickets reveals compensatory intragenomic coadaptation during adaptive evolution
This study was supported with funding from the UK Natural Environment Research Council to N.W.B. (NE/T000619/1, NE/T014806/1, NE/L011255/1) and M.B. (NE/W001519/1). We are grateful for bioinformatics support from Iain Milne and the use of the UK\u2019s Crop Diversity Bioinformatics HPC, funded by the UK Biotechnology and Biological Sciences Research Council (BB/S019669/1), as well as the St Andrews Bioinformatics Unit, funded by a Wellcome Trust ISSF award (105621/Z/14/Z).Theory predicts that compensatory genetic changes reduce negative indirect effects of selected variants during adaptive evolution, but evidence is scarce. Here, we test this in a wild population of Hawaiian crickets using temporal genomics and a high-quality chromosome-level cricket genome. In this population, a mutation, flatwing, silences males and rapidly spread due to an acoustically-orienting parasitoid. Our sampling spanned a social transition during which flatwing fixed and the population went silent. We find long-range linkage disequilibrium around the putative flatwing locus was maintained over time, and hitchhiking genes had functions related to negative flatwing-associated effects. We develop a combinatorial enrichment approach using transcriptome data to test for compensatory, intragenomic coevolution. Temporal changes in genomic selection were distributed genome-wide and functionally associated with the population’s transition to silence, particularly behavioural responses to silent environments. Our results demonstrate how ‘adaptation begets adaptation’; changes to the sociogenetic environment accompanying rapid trait evolution can generate selection provoking further, compensatory adaptation.Peer reviewe
Field cricket genome reveals the footprint of recent, abrupt adaptation in the wild.
Evolutionary adaptation is generally thought to occur through incremental mutational steps, but large mutational leaps can occur during its early stages. These are challenging to study in nature due to the difficulty of observing new genetic variants as they arise and spread, but characterizing their genomic dynamics is important for understanding factors favoring rapid adaptation. Here, we report genomic consequences of recent, adaptive song loss in a Hawaiian population of field crickets (Teleogryllus oceanicus). A discrete genetic variant, flatwing, appeared and spread approximately 15 years ago. Flatwing erases sound-producing veins on male wings. These silent flatwing males are protected from a lethal, eavesdropping parasitoid fly. We sequenced, assembled and annotated the cricket genome, produced a linkage map, and identified a flatwing quantitative trait locus covering a large region of the X chromosome. Gene expression profiling showed that flatwing is associated with extensive genome-wide effects on embryonic gene expression. We found that flatwing male crickets express feminized chemical pheromones. This male feminizing effect, on a different sexual signaling modality, is genetically associated with the flatwing genotype. Our findings suggest that the early stages of evolutionary adaptation to extreme pressures can be accompanied by greater genomic and phenotypic disruption than previously appreciated, and highlight how abrupt adaptation might involve suites of traits that arise through pleiotropy or genomic hitchhiking
Acquisition of Growth-Inhibitory Antibodies against Blood-Stage Plasmodium falciparum
Background: Antibodies that inhibit the growth of blood-stage Plasmodium falciparum may play an important role in acquired and vaccine-induced immunity in humans. However, the acquisition and activity of these antibodies is not well understood. Methods: We tested dialysed serum and purified immunoglobulins from Kenyan children and adults for inhibition of P. falciparum blood-stage growth in vitro using different parasite lines. Serum antibodies were measured by ELISA to bloodstage parasite antigens, extracted from P. falciparum schizonts, and to recombinant merozoite surface protein 1 (42 kDa Cterminal fragment, MSP1-42). Results: Antibodies to blood-stage antigens present in schizont protein extract and to recombinant MSP1-42 significantly increased with age and were highly correlated. In contrast, growth-inhibitory activity was not strongly associated with age and tended to decline marginally with increasing age and exposure, with young children demonstrating the highest inhibitory activity. Comparison of growth-inhibitory activity among samples collected from the same population at different time points suggested that malaria transmission intensity influenced the level of growth-inhibitory antibodies. Antibodies to recombinant MSP1-42 were not associated with growth inhibition and high immunoglobulin G levels were poorly predictive of inhibitory activity. The level of inhibitory activity against different isolates varied. Conclusions: Children can acquire growth-inhibitory antibodies at a young age, but once they are acquired they do not appear to be boosted by on-going exposure. Inhibitory antibodies may play a role in protection from early childhood malaria
Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A
The major histocompatibility complex (MHC) on chromosome 6 is associated with susceptibility to more common diseases than any other region of the human genome, including almost all disorders classified as autoimmune. In type 1 diabetes the major genetic susceptibility determinants have been mapped to the MHC class II genes HLA-DQB1 and HLA-DRB1 (refs 1-3), but these genes cannot completely explain the association between type 1 diabetes and the MHC region. Owing to the region's extreme gene density, the multiplicity of disease-associated alleles, strong associations between alleles, limited genotyping capability, and inadequate statistical approaches and sample sizes, which, and how many, loci within the MHC determine susceptibility remains unclear. Here, in several large type 1 diabetes data sets, we analyse a combined total of 1,729 polymorphisms, and apply statistical methods - recursive partitioning and regression - to pinpoint disease susceptibility to the MHC class I genes HLA-B and HLA-A (risk ratios >1.5; Pcombined = 2.01 × 10-19 and 2.35 × 10-13, respectively) in addition to the established associations of the MHC class II genes. Other loci with smaller and/or rarer effects might also be involved, but to find these, future searches must take into account both the HLA class II and class I genes and use even larger samples. Taken together with previous studies, we conclude that MHC-class-I-mediated events, principally involving HLA-B*39, contribute to the aetiology of type 1 diabetes. ©2007 Nature Publishing Group
A Genome-Wide Association Study of Diabetic Kidney Disease in Subjects With Type 2 Diabetes
dentification of sequence variants robustly associated with predisposition to diabetic kidney disease (DKD) has the potential to provide insights into the pathophysiological mechanisms responsible. We conducted a genome-wide association study (GWAS) of DKD in type 2 diabetes (T2D) using eight complementary dichotomous and quantitative DKD phenotypes: the principal dichotomous analysis involved 5,717 T2D subjects, 3,345 with DKD. Promising association signals were evaluated in up to 26,827 subjects with T2D (12,710 with DKD). A combined T1D+T2D GWAS was performed using complementary data available for subjects with T1D, which, with replication samples, involved up to 40,340 subjects with diabetes (18,582 with DKD). Analysis of specific DKD phenotypes identified a novel signal near GABRR1 (rs9942471, P = 4.5 x 10(-8)) associated with microalbuminuria in European T2D case subjects. However, no replication of this signal was observed in Asian subjects with T2D or in the equivalent T1D analysis. There was only limited support, in this substantially enlarged analysis, for association at previously reported DKD signals, except for those at UMOD and PRKAG2, both associated with estimated glomerular filtration rate. We conclude that, despite challenges in addressing phenotypic heterogeneity, access to increased sample sizes will continue to provide more robust inference regarding risk variant discovery for DKD.Peer reviewe
Exploration of Shared Genetic Architecture Between Subcortical Brain Volumes and Anorexia Nervosa
In MRI scans of patients with anorexia nervosa (AN), reductions in brain volume are often apparent. However, it is unknown whether such brain abnormalities are influenced by genetic determinants that partially overlap with those underlying AN. Here, we used a battery of methods (LD score regression, genetic risk scores, sign test, SNP effect concordance analysis, and Mendelian randomization) to investigate the genetic covariation between subcortical brain volumes and risk for AN based on summary measures retrieved from genome-wide association studies of regional brain volumes (ENIGMA consortium, n = 13,170) and genetic risk for AN (PGC-ED consortium, n = 14,477). Genetic correlations ranged from − 0.10 to 0.23 (all p > 0.05). There were some signs of an inverse concordance between greater thalamus volume and risk for AN (permuted p = 0.009, 95% CI: [0.005, 0.017]). A genetic variant in the vicinity of ZW10, a gene involved in cell division, and neurotransmitter and immune system relevant genes, in particular DRD2, was significantly associated with AN only after conditioning on its association with caudate volume (pFDR = 0.025). Another genetic variant linked to LRRC4C, important in axonal and synaptic development, reached significance after conditioning on hippocampal volume (pFDR = 0.021). In this comprehensive set of analyses and based on the largest available sample sizes to date, there was weak evidence for associations between risk for AN and risk for abnormal subcortical brain volumes at a global level (that is, common variant genetic architecture), but suggestive evidence for effects of single genetic markers. Highly powered multimodal brain- and disorder-related genome-wide studies are needed to further dissect the shared genetic influences on brain structure and risk for AN
Analysis of shared heritability in common disorders of the brain
ience, this issue p. eaap8757 Structured Abstract INTRODUCTION Brain disorders may exhibit shared symptoms and substantial epidemiological comorbidity, inciting debate about their etiologic overlap. However, detailed study of phenotypes with different ages of onset, severity, and presentation poses a considerable challenge. Recently developed heritability methods allow us to accurately measure correlation of genome-wide common variant risk between two phenotypes from pools of different individuals and assess how connected they, or at least their genetic risks, are on the genomic level. We used genome-wide association data for 265,218 patients and 784,643 control participants, as well as 17 phenotypes from a total of 1,191,588 individuals, to quantify the degree of overlap for genetic risk factors of 25 common brain disorders. RATIONALE Over the past century, the classification of brain disorders has evolved to reflect the medical and scientific communities' assessments of the presumed root causes of clinical phenomena such as behavioral change, loss of motor function, or alterations of consciousness. Directly observable phenomena (such as the presence of emboli, protein tangles, or unusual electrical activity patterns) generally define and separate neurological disorders from psychiatric disorders. Understanding the genetic underpinnings and categorical distinctions for brain disorders and related phenotypes may inform the search for their biological mechanisms. RESULTS Common variant risk for psychiatric disorders was shown to correlate significantly, especially among attention deficit hyperactivity disorder (ADHD), bipolar disorder, major depressive disorder (MDD), and schizophrenia. By contrast, neurological disorders appear more distinct from one another and from the psychiatric disorders, except for migraine, which was significantly correlated to ADHD, MDD, and Tourette syndrome. We demonstrate that, in the general population, the personality trait neuroticism is significantly correlated with almost every psychiatric disorder and migraine. We also identify significant genetic sharing between disorders and early life cognitive measures (e.g., years of education and college attainment) in the general population, demonstrating positive correlation with several psychiatric disorders (e.g., anorexia nervosa and bipolar disorder) and negative correlation with several neurological phenotypes (e.g., Alzheimer's disease and ischemic stroke), even though the latter are considered to result from specific processes that occur later in life. Extensive simulations were also performed to inform how statistical power, diagnostic misclassification, and phenotypic heterogeneity influence genetic correlations. CONCLUSION The high degree of genetic correlation among many of the psychiatric disorders adds further evidence that their current clinical boundaries do not reflect distinct underlying pathogenic processes, at least on the genetic level. This suggests a deeply interconnected nature for psychiatric disorders, in contrast to neurological disorders, and underscores the need to refine psychiatric diagnostics. Genetically informed analyses may provide important "scaffolding" to support such restructuring of psychiatric nosology, which likely requires incorporating many levels of information. By contrast, we find limited evidence for widespread common genetic risk sharing among neurological disorders or across neurological and psychiatric disorders. We show that both psychiatric and neurological disorders have robust correlations with cognitive and personality measures. Further study is needed to evaluate whether overlapping genetic contributions to psychiatric pathology may influence treatment choices. Ultimately, such developments may pave the way toward reduced heterogeneity and improved diagnosis and treatment of psychiatric disorders
- …