42 research outputs found

    Transcriptional responses to fatty acid are coordinated by combinatorial control

    Get PDF
    In transcriptional regulatory networks, the coincident binding of a combination of factors to regulate a gene implies the existence of complex mechanisms to control both the gene expression profile and specificity of the response. Unraveling this complexity is a major challenge to biologists. Here, a novel network topology-based clustering approach was applied to condition-specific genome-wide chromatin localization and expression data to characterize a dynamic transcriptional regulatory network responsive to the fatty acid oleate. A network of four (predicted) regulators of the response (Oaf1p, Pip2p, Adr1p and Oaf3p) was investigated. By analyzing trends in the network structure, we found that two groups of multi-input motifs form in response to oleate, each controlling distinct functional classes of genes. This functionality is contributed in part by Oaf1p, which is a component of both types of multi-input motifs and has two different regulatory activities depending on its binding context. The dynamic cooperation between Oaf1p and Pip2p appears to temporally synchronize the two different responses. Together, these data suggest a network mechanism involving dynamic combinatorial control for coordinating transcriptional responses

    Alberta Heritage Fund for Medical Research Senior Scholar and a Canadian Institutes of Health Research (CIHR) investigator

    Get PDF
    PURPOSE. To determine the genetic and biochemical defects that underlie Axenfeld-Rieger malformations, identify the pathogenic mutation causing these malformations, and understand how these mutations alter protein function. METHODS. FOXC1 was amplified from a proband with AxenfeldRieger malformations and the proband's mother. PCR products were sequenced to identify the pathogenic mutation. Sitedirected mutagenesis was used to introduce this mutation into the FOXC1 cDNA. A synthetic mutation at the same position was also introduced, and both natural and synthetic proteins were tested for their ability to localize to the nucleus, bind DNA, and transactivate gene expression. RESULTS. A novel missense mutation (L86F) was identified in FOXC1 in this family. The mutation is located in ␣-helix 1 of the forkhead domain. Biochemical assays showed that the L86F mutation does not affect nuclear localization of FOXC1, but reduces DNA binding and significantly reduces transactivation. The severity of the disruption to FOXC1 protein activity does not appear to correspond well with the severity of the phenotype in the patient. Analogous studies using a L86P, a known ␣-helix breaker, severely disrupts FOXC1 function, revealing the importance of helix 1 in FOXC1 structure and function. CONCLUSIONS. A novel mutation in helix 1 of the FOXC1 forkhead domain has been identified and the importance of position 86 in FOXC1 activity demonstrated. These studies also identified the role of helix 1 in FOXC1 function and provide further evidence for the lack of strong genotype-phenotype correlation in FOXC1 pathogenesis. Normal development appears to be dependent on tight upper and lower thresholds of T he FOX (forkhead box) proteins have been defined by the presence of the forkhead domain (FHD), a 110-amino-acid DNA-binding motif, originally identified as a region of homology between Drosophila melanogaster forkhead protein and rat hepatocyte nuclear factor 3 proteins. 1 Since that time, the forkhead family of transcription factors has grown rapidly, establishing the FOX family as critical regulators of embryogenesis, tissue-specific cell differentiation, cell migration, tumorigenesis, and even language and speech acquisition. 5-14 The penetrance of ocular AR malformations is highly variable. Patients may manifest iris hypoplasia, posterior embryotoxon, adhesions of the iris and the cornea, an underdeveloped or aberrantly developed angle between the cornea and iris, and corectopia. In approximately half of the patients with AR malformations, glaucoma, a progressive, blinding condition, develops. Nonocular features include dental anomalies, maxillary hypoplasia, and redundant periumbilical skin. Congenital cardiac anomalies may also rarely be found in patients with FOXC1 mutations. 18 Studies of the FHD reveal how different missense mutations disrupt specific FOXC1 activities, showing the utility of using these naturally occurring missense mutations to understand the function of FOXC1. We report herein the identification, patient phenotype, and molecular analysis of a novel disease-causing missense mutation in FOXC1. Molecular analysis revealed that the L86F missense mutation, located in helix 1 of the FHD, reduces the ability of FOXC1 to bind DNA and disrupts its ability to transactivate gene expression. Analysis of a synthetic L86P mutation demonstrates the importance of helix 1 in contributing to the overall function of FOXC1. METHODS Patient Report This research adhered to the tenets of the Declaration of Helsinki. The proband was a male with congenital glaucoma in the right eye leading to a complete loss of vision in the eye by age 22. In the left eye, the patient had posterior embryotoxon, iris hypoplasia, iridocorneal adhesions in the angle, and mild corectopia. Interocular pressure was more than 40 mm Hg in the patient's left eye. Systemic anomalies included short stature and obesity, a myocardial infarction that occurred at age 41, and dental anomalies. The mother had diagnoses of iris processes to Schwalbe's line, Haab's striae, congenital glaucoma, obesity, short stature, and hypercholesterolemia. From th

    Genome-wide analysis of signaling networks regulating fatty acid–induced gene expression and organelle biogenesis

    Get PDF
    Reversible phosphorylation is the most common posttranslational modification used in the regulation of cellular processes. This study of phosphatases and kinases required for peroxisome biogenesis is the first genome-wide analysis of phosphorylation events controlling organelle biogenesis. We evaluate signaling molecule deletion strains of the yeast Saccharomyces cerevisiae for presence of a green fluorescent protein chimera of peroxisomal thiolase, formation of peroxisomes, and peroxisome functionality. We find that distinct signaling networks involving glucose-mediated gene repression, derepression, oleate-mediated induction, and peroxisome formation promote stages of the biogenesis pathway. Additionally, separate classes of signaling proteins are responsible for the regulation of peroxisome number and size. These signaling networks specify the requirements of early and late events of peroxisome biogenesis. Among the numerous signaling proteins involved, Pho85p is exceptional, with functional involvements in both gene expression and peroxisome formation. Our study represents the first global study of signaling networks regulating the biogenesis of an organelle

    Quantitative mass spectrometry reveals a role for the GTPase Rho1p in actin organization on the peroxisome membrane

    Get PDF
    We have combined classical subcellular fractionation with large-scale quantitative mass spectrometry to identify proteins that enrich specifically with peroxisomes of Saccharomyces cerevisiae. In two complementary experiments, isotope-coded affinity tags and tandem mass spectrometry were used to quantify the relative enrichment of proteins during the purification of peroxisomes. Mathematical modeling of the data from 306 quantified proteins led to a prioritized list of 70 candidates whose enrichment scores indicated a high likelihood of them being peroxisomal. Among these proteins, eight novel peroxisome-associated proteins were identified. The top novel peroxisomal candidate was the small GTPase Rho1p. Although Rho1p has been shown to be tethered to membranes of the secretory pathway, we show that it is specifically recruited to peroxisomes upon their induction in a process dependent on its interaction with the peroxisome membrane protein Pex25p. Rho1p regulates the assembly state of actin on the peroxisome membrane, thereby controlling peroxisome membrane dynamics and biogenesis

    Genome-Wide Analysis of Effectors of Peroxisome Biogenesis

    Get PDF
    Peroxisomes are intracellular organelles that house a number of diverse metabolic processes, notably those required for ÎČ-oxidation of fatty acids. Peroxisomes biogenesis can be induced by the presence of peroxisome proliferators, including fatty acids, which activate complex cellular programs that underlie the induction process. Here, we used multi-parameter quantitative phenotype analyses of an arrayed mutant collection of yeast cells induced to proliferate peroxisomes, to establish a comprehensive inventory of genes required for peroxisome induction and function. The assays employed include growth in the presence of fatty acids, and confocal imaging and flow cytometry through the induction process. In addition to the classical phenotypes associated with loss of peroxisomal functions, these studies identified 169 genes required for robust signaling, transcription, normal peroxisomal development and morphologies, and transmission of peroxisomes to daughter cells. These gene products are localized throughout the cell, and many have indirect connections to peroxisome function. By integration with extant data sets, we present a total of 211 genes linked to peroxisome biogenesis and highlight the complex networks through which information flows during peroxisome biogenesis and function

    Histone chaperone Chz1p regulates H2B ubiquitination and subtelomeric anti-silencing

    Get PDF
    Chz1p is a histone chaperone that interacts physically and functionally with the histone variant Htz1p, which has been implicated in establishing and maintaining boundaries between transcriptionally inactive heterochromatin and active euchromatin. To investigate the role of Chz1p in chromatin organization, we performed genome-wide expression arrays and chromatin immunoprecipitations of SIR complex components and modified histones in a CHZ1 deletion strain. Deletion of CHZ1 led to reduced ubiquitination of subtelomere-associated H2B, reduced subtelomeric H3K79 di-methylation, and increased binding of Sir3p, and Sir4p at telomere-distal euchromatin regions, correlating with decreased gene expression in subtelomeric regions. This anti-silencing defect appears to be mediated by enhanced association of de-ubiquitinase Ubp10p with subtelomeric DNA, as detected by chromatin immunoprecipitation analysis. In support of this, we show that deletion of UBP10 can antagonize the subtelomeric silencing phenotype of Δchz1. Taken together, the results demonstrate a novel role for Chz1p in epigenetic regulation, through H2B de-ubiquitination by Ubp10p

    The impact of immediate breast reconstruction on the time to delivery of adjuvant therapy: the iBRA-2 study

    Get PDF
    Background: Immediate breast reconstruction (IBR) is routinely offered to improve quality-of-life for women requiring mastectomy, but there are concerns that more complex surgery may delay adjuvant oncological treatments and compromise long-term outcomes. High-quality evidence is lacking. The iBRA-2 study aimed to investigate the impact of IBR on time to adjuvant therapy. Methods: Consecutive women undergoing mastectomy ± IBR for breast cancer July–December, 2016 were included. Patient demographics, operative, oncological and complication data were collected. Time from last definitive cancer surgery to first adjuvant treatment for patients undergoing mastectomy ± IBR were compared and risk factors associated with delays explored. Results: A total of 2540 patients were recruited from 76 centres; 1008 (39.7%) underwent IBR (implant-only [n = 675, 26.6%]; pedicled flaps [n = 105,4.1%] and free-flaps [n = 228, 8.9%]). Complications requiring re-admission or re-operation were significantly more common in patients undergoing IBR than those receiving mastectomy. Adjuvant chemotherapy or radiotherapy was required by 1235 (48.6%) patients. No clinically significant differences were seen in time to adjuvant therapy between patient groups but major complications irrespective of surgery received were significantly associated with treatment delays. Conclusions: IBR does not result in clinically significant delays to adjuvant therapy, but post-operative complications are associated with treatment delays. Strategies to minimise complications, including careful patient selection, are required to improve outcomes for patients

    Which method is best for the induction of labour?: A systematic review, network meta-analysis and cost-effectiveness analysis

    Get PDF
    Background: More than 150,000 pregnant women in England and Wales have their labour induced each year. Multiple pharmacological, mechanical and complementary methods are available to induce labour. Objective: To assess the relative effectiveness, safety and cost-effectiveness of labour induction methods and, data permitting, effects in different clinical subgroups. Methods: We carried out a systematic review using Cochrane methods. The Cochrane Pregnancy and Childbirth Group’s Trials Register was searched (March 2014). This contains over 22,000 reports of controlled trials (published from 1923 onwards) retrieved from weekly searches of OVID MEDLINE (1966 to current); Cochrane Central Register of Controlled Trials (The Cochrane Library); EMBASE (1982 to current); Cumulative Index to Nursing and Allied Health Literature (1984 to current); ClinicalTrials.gov; the World Health Organization International Clinical Trials Registry Portal; and hand-searching of relevant conference proceedings and journals. We included randomised controlled trials examining interventions to induce labour compared with placebo, no treatment or other interventions in women eligible for third-trimester induction. We included outcomes relating to efficacy, safety and acceptability to women. In addition, for the economic analysis we searched the Database of Abstracts of Reviews of Effects, and Economic Evaluations Databases, NHS Economic Evaluation Database and the Health Technology Assessment database. We carried out a network meta-analysis (NMA) using all of the available evidence, both direct and indirect, to produce estimates of the relative effects of each treatment compared with others in a network. We developed a de novo decision tree model to estimate the cost-effectiveness of various methods. The costs included were the intervention and other hospital costs incurred (price year 2012–13). We reviewed the literature to identify preference-based utilities for the health-related outcomes in the model. We calculated incremental cost-effectiveness ratios, expected costs, utilities and net benefit. We represent uncertainty in the optimal intervention using cost-effectiveness acceptability curves. Results: We identified 1190 studies; 611 were eligible for inclusion. The interventions most likely to achieve vaginal delivery (VD) within 24 hours were intravenous oxytocin with amniotomy [posterior rank 2; 95% credible intervals (CrIs) 1 to 9] and higher-dose (≄ 50 ÎŒg) vaginal misoprostol (rank 3; 95% CrI 1 to 6). Compared with placebo, several treatments reduced the odds of caesarean section, but we observed considerable uncertainty in treatment rankings. For uterine hyperstimulation, double-balloon catheter had the highest probability of being among the best three treatments, whereas vaginal misoprostol (≄ 50 ÎŒg) was most likely to increase the odds of excessive uterine activity. For other safety outcomes there were insufficient data or there was too much uncertainty to identify which treatments performed ‘best’. Few studies collected information on women’s views. Owing to incomplete reporting of the VD within 24 hours outcome, the cost-effectiveness analysis could compare only 20 interventions. The analysis suggested that most interventions have similar utility and differ mainly in cost. With a caveat of considerable uncertainty, titrated (low-dose) misoprostol solution and buccal/sublingual misoprostol had the highest likelihood of being cost-effective. Limitations: There was considerable uncertainty in findings and there were insufficient data for some planned subgroup analyses. Conclusions: Overall, misoprostol and oxytocin with amniotomy (for women with favourable cervix) is more successful than other agents in achieving VD within 24 hours. The ranking according to safety of different methods was less clear. The cost-effectiveness analysis suggested that titrated (low-dose) oral misoprostol solution resulted in the highest utility, whereas buccal/sublingual misoprostol had the lowest cost. There was a high degree of uncertainty as to the most cost-effective intervention

    Quantitative Phosphoproteomics in Fatty Acid Stimulated Saccharomyces cerevisiae

    No full text
    This protocol describes the growth and stimulation, with the fatty acid oleate, of isotopically heavy and light S. cerevisiae cells. Cells are ground using a cryolysis procedure in a ball mill grinder and the resulting grindate brought into solution by urea solubilization. This procedure allows for the lysis of the cells in a metabolically inactive state, preserving phosphorylation and preventing reorientation of the phosphoproteome during cell lysis. Following reduction, alkylation, trypsin digestion of the proteins, the samples are desalted on C18 columns and the sample complexity reduced by fractionation using hydrophilic interaction chromatography (HILIC). HILIC columns preferentially retain hydrophilic molecules which is well suited for phosphoproteomics. Phosphorylated peptides tend to elute later in the chromatographic profile than the non phosphorylated counterparts. After fractionation, phosphopeptides are enriched using immobilized metal chromatography, which relies on charge-based affinities for phosphopeptide enrichment. At the end of this procedure the samples are ready to be quantitatively analyzed by mass spectrometry
    corecore