97 research outputs found

    IntĂ©rĂȘt du dosage de la troponine I cardiaque plasmatique pour le diagnostic d'affection myocardique aiguĂ« chez le chien

    Get PDF
    La troponine I cardiaque (cTNI) est un composant du complexe troponine myocardique. Elle s'est rĂ©vĂ©lĂ©e ĂȘtre un marqueur plus sensible et plus spĂ©cifique de l'atteinte myocardique que ceux prĂ©cĂ©demment utilisĂ©s. La concentration en cTNI d'Ă©chantillons plasmatiques de chiens sains (n=25) et de chiens suspects d'atteinte myocardique [traumatisme (n=30), parvovirose (n=16), autre (n=6)] a Ă©tĂ© dosĂ©e grĂące Ă  un immunodosage (Advia Centaur). La cTNI Ă©tait indĂ©tectable pour tout le lot tĂ©moin (concentration infĂ©rieure Ă  0,1 ng/ml) et anormalement Ă©levĂ©e chez 16 chiens traumatisĂ©s et 4 chiens atteints d'affections diverses (1 dyspnĂ©e, 2 dilatation-torsion de l'estomac et 1 Ă©panchement pĂ©ricardique). Aucune diffĂ©rence n'a Ă©tĂ© notĂ©e entre le lot tĂ©moin et celui atteint de parvovirose. Le dosage de la cTNI semble ĂȘtre efficace pour diagnostiquer une atteinte myocardique. Son intĂ©rĂȘt dans la prise en charge d'animaux potentiellement atteints reste Ă  Ă©valuer

    Interbibly, l’agence qui relie

    Get PDF
    L’agence de coopĂ©ration entre bibliothĂšques, services d’archives et de documentation de Champagne-Ardenne, Interbibly, rĂ©unit une soixantaine d’établissements en zones urbaine et rurale. Son objectif ? Participer Ă  leur dĂ©veloppement et optimiser leurs moyens. Ses points forts ? CoopĂ©ration en conservation, valorisation du patrimoine Ă©crit, formation des personnels, dĂ©veloppement des publics

    Chitin-based Materials in Tissue Engineering: Applications in Soft Tissue and Epithelial Organ

    Get PDF
    Chitin-based materials and their derivatives are receiving increased attention in tissue engineering because of their unique and appealing biological properties. In this review, we summarize the biomedical potential of chitin-based materials, specifically focusing on chitosan, in tissue engineering approaches for epithelial and soft tissues. Both types of tissues play an important role in supporting anatomical structures and physiological functions. Because of the attractive features of chitin-based materials, many characteristics beneficial to tissue regeneration including the preservation of cellular phenotype, binding and enhancement of bioactive factors, control of gene expression, and synthesis and deposition of tissue-specific extracellular matrix are well-regulated by chitin-based scaffolds. These scaffolds can be used in repairing body surface linings, reconstructing tissue structures, regenerating connective tissue, and supporting nerve and vascular growth and connection. The novel use of these scaffolds in promoting the regeneration of various tissues originating from the epithelium and soft tissue demonstrates that these chitin-based materials have versatile properties and functionality and serve as promising substrates for a great number of future applications

    Bionic cartilage acellular matrix microspheres as scaffold for engineering cartilage

    Get PDF
    Extracellular matrix (ECM) scaffolds made from decellularized natural cartilage have been successfully used in cartilage lesion repair, but allogeneic cartilage donors are always in shortage and xenogeneic cartilage tissues may have the risk of unknown disease transfer. In this study, we constructed artificial bionic cartilage microspheres by encapsulating MSCs in collagen microspheres and cultured in a chondrogenic-inducing medium. Then, acellular matrix microsphere (BCAMM) scaffolds were fabricated from the cultured microspheres at three different developmental stages. A novel technique was introduced to fabricate BCAMM scaffolds, which enabled the production and utilization of the scaffolds in a short time. Due to the differences in surface morphologies and biological compositions, the three BCAMM scaffolds showed different chondrogenic effects. The 10-day BCAMM (10-BCAMM) scaffold showed the best overall results, successfully inducing MSC chondrogenesis without any additional fetal bovine serum or induction components (TGF-ÎČ or dexamethasone). In comparison, the 5-day BCAMM (5-BCAMM) scaffold showed potential osteogenic effects. The advantages of micron-sized BCAMMs are outlined, specifically in the easier decellularization process without grinding, homogeneous cell seeding and infiltration, chondrogenic induction and better fitting to the irregular lesion shape

    Towards the design of 3D multiscale instructive tissue engineering constructs: Current approaches and trends

    Get PDF
    The design of 3D constructs with adequate properties to instruct and guide cells both in vitro and in vivo is one of the major focuses of tissue engineering. Successful tissue regeneration depends on the favorable crosstalk between the supporting structure, the cells and the host tissue so that a balanced matrix production and degradation is achieved. Herein, the major occurring events and players in normal and regenerative tissue are overviewed. These have been inspiring the selection or synthesis of instructive cues to include into the 3D constructs. We further highlight the importance of a multiscale perception of the range of features that can be included on the biomimetic structures. Lastly, we focus on the current and developing tissue-engineering approaches for the preparation of such 3D constructs: top-down, bottom-up and integrative. Bottom-up and integrative approaches present a higher potential for the design of tissue engineering devices with multiscale features and higher biochemichal control than top-down strategies, and are the main focus of this review.The research leading to these results has received funding from the European Research Council grant agreement ERC-2012-ADG-20120216-321266 for the project ComplexiTE. Portuguese Foundation for Science and Technology is gratefully acknowledged for the fellowship of Sara M. Oliveira (SFRH/BD/70107/2010)

    Using polymeric materials to control stem cell behavior for tissue regeneration

    Full text link
    Patients with organ failure often suffer from increased morbidity and decreased quality of life. Current strategies of treating organ failure have limitations, including shortage of donor organs, low efficiency of grafts, and immunological problems. Tissue engineering emerged about two decades ago as a strategy to restore organ function with a living, functional engineered substitute. However, the ability to engineer a functional organ is limited by a limited understanding of the interactions between materials and cells that are required to yield functional tissue equivalents. Polymeric materials are one of the most promising classes of materials for use in tissue engineering, due to their biodegradability, flexibility in processing and property design, and the potential to use polymer properties to control cell function. Stem cells offer potential in tissue engineering because of their unique capacity to self‐renew and differentiate into neurogenic, osteogenic, chondrogenic, and myogenic lineages under appropriate stimuli from extracellular components. This review examines recent advances in stem cell–polymer interactions for tissue regeneration, specifically highlighting control of polymer properties to direct adhesion, proliferation, and differentiation of stem cells, and how biomaterials can be designed to provide some of the stimuli to cells that the natural extracellular matrix does. (Part C) 96:63–81, 2012. © 2012 Wiley Periodicals, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90582/1/21003_ftp.pd

    Chitosan fibrous scaffolds for cartilage tissue engineering

    Get PDF
    The biocompatibility of chitosan and its similarity with glycosaminoglycans make it attractive for cartilage engineering despite its limited cell adhesion properties. Structural and chemical characteristics of chitosan scaffolds may be improved for cartilage engineering application. We planned to evaluate chitosan meshes produced by a novel technique and the effect of chitosan structure on mesenchymal stem cells (MSCs) chondrogenesis. Another objective was to improve cell adhesion and chondrogenesis on chitosan by modifying the chemical composition of the scaffold (reacetylation, collagen II, or hyaluronic acid (HA) coating). A replica molding technique was developed to produce chitosan meshes of different fiber-width. A polyglycolic acid (PGA) mesh served as a reference. Constructs were analyzed at two and 21 days after seeding chondrocytes with confocal microscopy, scanning electron microscopy, histology, and quantitative analysis (weights, DNA, glycosaminoglycans, collagen II). Chondrocytes maintained their phenotypic appearance and a high viability but attached preferentially to PGA. Matrix production per chondrocyte was superior on chitosan. Chitosan meshes and sponges were analyzed after seeding and culture of MSCs under chondrogenic condition for 21 days. The cellularity was similar between groups but matrix production was greater on meshes. Chitosan and reacetylated-chitosan scaffolds were coated with collagen II or HA. Scaffolds were characterized prior to seeding MSCs. Chitosan meshes were then coated with collagen at two densities. PGA served as a reference. Constructs were evaluated after seeding or culture of MSCs for 21 days in chondrogenic medium. MSCs adhered less to reacetylated-chitosan despite collagen coating. HA did not affect cell adhesion. The cell attachment on chitosan correlated with collagen density. The cell number and matrix production were improved after culture in collagen coated meshes. The differences between PGA and chitosan are likely to result from the chemical composition. Chondrogenesis is superior on chitosan meshes compared to sponges. Collagen II coating is an efficient way to overcome poor cell adhesion on chitosan. These findings encourage the use of chitosan meshes coated with collagen II and confirm the importance of biomimetic scaffolds for tissue engineering. The decreased cell adhesion on reacetylated chitosan and the poor mechanical stability of PGA limit their use for tissue engineering

    Gait analysis of the hind limb in Labrador Retrievers with and without cranial cruciate ligament disease

    Get PDF
    Cranial cruciate ligament (CCL) deficiency is the leading cause of lameness affecting the stifle joints of large breed dogs, especially Labrador Retrievers. Although CCL disease has been studied extensively, its exact pathogenesis and the primary cause leading to CCL rupture remain controversial. However, weakening secondary to repetitive microtrauma is currently believed to cause the majority of CCL instabilities diagnosed in dogs. Techniques of gait analysis have become the most productive tools to investigate normal and pathological gait in human and veterinary subjects. The inverse dynamics analysis approach models the limb as a series of connected linkages and integrates morphometric data to yield information about the net joint moment, patterns of muscle power and joint reaction forces. The results of these studies have greatly advanced our understanding of the pathogenesis of joint diseases in humans. A muscular imbalance between the hamstring and quadriceps muscles has been suggested as a cause for anterior cruciate ligament rupture in female athletes. Based on these findings, neuromuscular training programs leading to a relative risk reduction of up to 80% has been designed. In spite of the cost and morbidity associated with CCL disease and its management, very few studies have focused on the inverse dynamics gait analysis of this condition in dogs. The general goals of this research were (1) to further define gait mechanism in Labrador Retrievers with and without CCL-deficiency, (2) to identify individual dogs that are susceptible to CCL disease, and (3) to characterize their gait. The mass, location of the center of mass (COM), and mass moment of inertia of hind limb segments were calculated using a noninvasive method based on computerized tomography of normal and CCL-deficient Labrador Retrievers. Regression models were developed to determine predictive equations to estimate body segment parameters on the basis of simple morphometric measurements, providing a basis for nonterminal studies of inverse dynamics of the hind limbs in Labrador Retrievers. Kinematic, ground reaction forces (GRF) and morphometric data were combined in an inverse dynamics approach to compute hock, stifle and hip net moments, powers and joint reaction forces (JRF) while trotting in normal, CCL-deficient or sound contralateral limbs. Reductions in joint moment, power, and loads observed in CCL-deficient limbs were interpreted as modifications adopted to reduce or avoid painful mobilization of the injured stifle joint. Lameness resulting from CCL disease affected predominantly reaction forces during the braking phase and the extension during push-off. Kinetics also identified a greater joint moment and power of the contralateral limbs compared with normal, particularly of the stifle extensor muscles group, which may correlate with the lameness observed, but also with the predisposition of contralateral limbs to CCL deficiency in dogs. For the first time, surface EMG patterns of major hind limb muscles during trotting gait of healthy Labrador Retrievers were characterized and compared with kinetic and kinematic data of the stifle joint. The use of surface EMG highlighted the co-contraction patterns of the muscles around the stifle joint, which were documented during transition periods between flexion and extension of the joint, but also during the flexion observed in the weight bearing phase. Identification of possible differences in EMG activation characteristics between healthy patients and dogs with or predisposed to orthopedic and neurological disease may help understanding the neuromuscular abnormality and gait mechanics of such disorders in the future. Conformation parameters, obtained from femoral and tibial radiographs, hind limb CT images, and dual-energy X-ray absorptiometry, of hind limbs predisposed to CCL deficiency were compared with the conformation parameters from hind limbs at low risk. A combination of tibial plateau angle and femoral anteversion angle measured on radiographs was determined optimal for discriminating predisposed and non-predisposed limbs for CCL disease in Labrador Retrievers using a receiver operating characteristic curve analysis method. In the future, the tibial plateau angle (TPA) and femoral anteversion angle (FAA) may be used to screen dogs suspected of being susceptible to CCL disease. Last, kinematics and kinetics across the hock, stifle and hip joints in Labrador Retrievers presumed to be at low risk based on their radiographic TPA and FAA were compared to gait data from dogs presumed to be predisposed to CCL disease for overground and treadmill trotting gait. For overground trials, extensor moment at the hock and energy generated around the hock and stifle joints were increased in predisposed limbs compared to non predisposed limbs. For treadmill trials, dogs qualified as predisposed to CCL disease held their stifle at a greater degree of flexion, extended their hock less, and generated more energy around the stifle joints while trotting on a treadmill compared with dogs at low risk. This characterization of the gait mechanics of Labrador Retrievers at low risk or predisposed to CCL disease may help developing and monitoring preventive exercise programs to decrease gastrocnemius dominance and strengthened the hamstring muscle group
    • 

    corecore