3,935 research outputs found

    Color responses and their adaptation in human superior colliculus and lateral geniculate nucleus

    Get PDF
    We use an fMRI adaptation paradigm to explore the selectivity of human responses in the lateral geniculate nucleus (LGN) and superior colliculus (SC) to red–green color and achromatic contrast.We measured responses to red–green (RG) and achromatic (ACH) high contrast sinewave counter-phasing rings with and without adaptation, within a block design. The signal for the RG test stimulus was reduced following both RG and ACH adaptation, whereas the signal for the ACH test was unaffected by either adaptor. These results provide compelling evidence that the human LGN and SC have significant capacity for color adaptation. Since in the LGN red–green responses are mediated by P cells, these findings are in contrast to earlier neurophysiological data from non-human primates that have shown weak or no contrast adaptation in the P pathway. Cross-adaptation of the red–green color response by achromatic contrast suggests unselective response adaptation and points to a dual role for P cells in responding to both color and achromatic contrast. We further show that subcortical adaptation is not restricted to the geniculostriate system, but is also present in the superior colliculus (SC), an oculomotor region that until recently, has been thought to be color-blind. Our data show that the human SC not only responds to red–green color contrast, but like the LGN, shows reliable but unselective adaptation.published_or_final_versio

    The Tevatron at the Frontier of Dark Matter Direct Detection

    Get PDF
    Direct detection of dark matter (DM) requires an interaction of dark matter particles with nucleons. The same interaction can lead to dark matter pair production at a hadron collider, and with the addition of initial state radiation this may lead to mono-jet signals. Mono-jet searches at the Tevatron can thus place limits on DM direct detection rates. We study these bounds both in the case where there is a contact interaction between DM and the standard model and where there is a mediator kinematically accessible at the Tevatron. We find that in many cases the Tevatron provides the current best limit, particularly for light dark matter, below 5 GeV, and for spin dependent interactions. Non-standard dark matter candidates are also constrained. The introduction of a light mediator significantly weakens the collider bound. A direct detection discovery that is in apparent conflict with mono-jet limits will thus point to a new light state coupling the standard model to the dark sector. Mono-jet searches with more luminosity and including the spectrum shape in the analysis can improve the constraints on DM-nucleon scattering cross section.Comment: 20 pages, 8 figures, final version in JHE

    The strong emergence of molecular structure

    Get PDF
    One of the most plausible and widely discussed examples of strong emergence is molecular structure. The only detailed account of it, which has been very influential, is due to Robin Hendry and is formulated in terms of downward causation. This paper explains Hendry’s account of the strong emergence of molecular structure and argues that it is coherent only if one assumes a diachronic reflexive notion of downward causation. However, in the context of this notion of downward causation, the strong emergence of molecular structure faces three challenges that have not been met and which have so far remained unnoticed. First, the putative empirical evidence presented for the strong emergence of molecular structure equally undermines supervenience, which is one of the main tenets of strong emergence. Secondly, it is ambiguous how the assumption of determinate nuclear positions is invoked for the support of strong emergence, as the role of this assumption in Hendry’s argument can be interpreted in more than one way. Lastly, there are understandings of causation which render the postulation of a downward causal relation between a molecule’s structure and its quantum mechanical entities, untenable

    Fatal miliary Coccidioidomycosis in a patient receiving infliximab therapy: a case report

    Get PDF
    A 78-year-old white male from Iowa in the United States of America receiving the anti- tumor necrois factor (TNF) agent infliximab therapy for rheumatoid arthritis developed a cheek ulcer which failed to respond to empiric antibiotic therapy. He subsequently presented with progressive respiratory failure from miliary coccidioidomycosis which proved fatal. The patient vacationed in Arizona 6 months previously and likely contracted the organism there as Iowa is not an endemic area for coccidioidomycosis. Respiratory failure from miliary infiltration is an uncommon presentation of coccidioidomycosis. Physicians should be aware of the importance of travel history and potential for life-threatening coccidioidomycosis in patients receiving tumor necrosis factor inhibitors

    Short- and long-term cause-specific survival of patients with inflammatory breast cancer

    Get PDF
    BACKGROUND: Inflammatory breast cancer (IBC) had been perceived to have a poor prognosis. Oncologists were not enthusiastic in the past to give aggressive treatment. Single institution studies tend to have small patient numbers and limited years of follow-up. Most studies do not report 10-, 15- or 20-year results. METHODS: Data was obtained from the population-based database of the Surveillance, Epidemiology, and End Results program of the National Cancer Institute from 1975–1995 using SEER*Stat5.0 software. This period of 21 years was divided into 7 periods of 3 years each. The years were chosen so that there was adequate follow-up information to 2000. ICD-O-2 histology 8530/3 was used to define IBC. The lognormal model was used for statistical analysis. RESULTS: A total of 1684 patients were analyzed, of which 84% were white, 11% were African Americans, and 5% belonged to other races. Age distribution was < 30 years in 1%, 30–40 in 11%, 40–50 in 22%, 50–60 in 24%, 60–70 in 21%, and > 70 in 21%. The lognormal model was validated for 1975–77 and for 1978–80, since the 10-, 15- and 20-year cause-specific survival (CSS) rates, could be calculated using the Kaplan-Meier method with data available in 2000. The data were then used to estimate the 10-, 15- and 20-year CSS rates for the more recent years, and to study the trend of improvement in survival. There were increasing incidences of IBC: 134 patients in the 1975–77 period to 416 patients in the 1993–95 period. The corresponding 20-year CSS increased from 9% to 20% respectively with standard errors of less than 4%. CONCLUSION: The improvement of survival during the study period may be due to introduction of more aggressive treatments. However, there seem to be no further increase of long-term CSS, which should encourage oncologists to find even more effective treatments. Because of small numbers of patients, randomized studies will be difficult to conduct. The SEER population-based database will yield the best possible estimate of the trend in improvement of survival for patients with IBC

    Ultrasonic NDE of Adhesive Bonds: The Inverse Problem

    Get PDF
    Over the past quarter century, a wide variety of ultrasonic techniques have been developed to determine the phase velocity and thickness of elastic plates. Techniques to measure the phase velocity include toneburst [1–4], separable pulse methods [5–7], and spectroscopy [8–11]. These classical methods require that the specimen be thick enough such that two successive echoes from the front and the back faces of the specimen, respectively, be separable in the time domain. Kinra and Dayal [12], developed a through transmission technique which removes this particular limitation of the classical methods. This technique works satisfactorily for the measurement of the phase velocity for specimens whose thickness is greater than one-half of the wavelength; for thinner specimens, however, their numerical algorithm runs into convergence problems. Moreover, their numerical algorithm cannot be used to determine thickness at any wavelength. The reasons for their convergence problems are discussed in detail by Iyer, Hanneman and Kinra [13]. They demonstrated that a detailed sensitivity analysis is a necessary pre-requisite for the development of a robust inversion algorithm. Accordingly, a new inversion scheme based on the method of least squares was developed by Iyer and Kinra to determine thickness from the measurements of phase, magnitude and complex spectrum, respectively, [14–17]. In all of the above ultrasonic methods only one parameter can be determined i.e., an accurate knowledge of thickness is required to determine the wavespeed and vice versa. This defines the central objective of the present work: In this paper we present a technique for determining, simultaneously, the thickness and wavespeed of a thin layer

    An extracellular steric seeding mechanism for Eph-ephrin signaling platform assembly

    Get PDF
    Erythropoetin-producing hepatoma (Eph) receptors are cell-surface protein tyrosine kinases mediating cell-cell communication. Upon activation, they form signaling clusters. We report crystal structures of the full ectodomain of human EphA2 (eEphA2) both alone and in complex with the receptor-binding domain of the ligand ephrinA5 (ephrinA5 RBD). Unliganded eEphA2 forms linear arrays of staggered parallel receptors involving two patches of residues conserved across A-class Ephs. eEphA2-ephrinA5 RBD forms a more elaborate assembly, whose interfaces include the same conserved regions on eEphA2, but rearranged to accommodate ephrinA5 RBD. Cell-surface expression of mutant EphA2s showed that these interfaces are critical for localization at cell-cell contacts and activation-dependent degradation. Our results suggest a 'nucleation' mechanism whereby a limited number of ligand-receptor interactions 'seed' an arrangement of receptors which can propagate into extended signaling arrays

    Adjusting a cancer mortality-prediction model for disease status-related eligibility criteria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Volunteering participants in disease studies tend to be healthier than the general population partially due to specific enrollment criteria. Using modeling to accurately predict outcomes of cohort studies enrolling volunteers requires adjusting for the bias introduced in this way. Here we propose a new method to account for the effect of a specific form of healthy volunteer bias resulting from imposing disease status-related eligibility criteria, on disease-specific mortality, by explicitly modeling the length of the time interval between the moment when the subject becomes ineligible for the study, and the outcome.</p> <p>Methods</p> <p>Using survival time data from 1190 newly diagnosed lung cancer patients at MD Anderson Cancer Center, we model the time from clinical lung cancer diagnosis to death using an exponential distribution to approximate the length of this interval for a study where lung cancer death serves as the outcome. Incorporating this interval into our previously developed lung cancer risk model, we adjust for the effect of disease status-related eligibility criteria in predicting the number of lung cancer deaths in the control arm of CARET. The effect of the adjustment using the MD Anderson-derived approximation is compared to that based on SEER data.</p> <p>Results</p> <p>Using the adjustment developed in conjunction with our existing lung cancer model, we are able to accurately predict the number of lung cancer deaths observed in the control arm of CARET.</p> <p>Conclusions</p> <p>The resulting adjustment was accurate in predicting the lower rates of disease observed in the early years while still maintaining reasonable prediction ability in the later years of the trial. This method could be used to adjust for, or predict the duration and relative effect of any possible biases related to disease-specific eligibility criteria in modeling studies of volunteer-based cohorts.</p

    Caspase-8 binding to cardiolipin in giant unilamellar vesicles provides a functional docking platform for bid

    Get PDF
    Caspase-8 is involved in death receptor-mediated apoptosis in type II cells, the proapoptotic programme of which is triggered by truncated Bid. Indeed, caspase-8 and Bid are the known intermediates of this signalling pathway. Cardiolipin has been shown to provide an anchor and an essential activating platform for caspase-8 at the mitochondrial membrane surface. Destabilisation of this platform alters receptor-mediated apoptosis in diseases such as Barth Syndrome, which is characterised by the presence of immature cardiolipin which does not allow caspase-8 binding. We used a simplified in vitro system that mimics contact sites and/or cardiolipin-enriched microdomains at the outer mitochondrial surface in which the platform consisting of caspase-8, Bid and cardiolipin was reconstituted in giant unilamellar vesicles. We analysed these vesicles by flow cytometry and confirm previous results that demonstrate the requirement for intact mature cardiolipin for caspase-8 activation and Bid binding and cleavage. We also used confocal microscopy to visualise the rupture of the vesicles and their revesiculation at smaller sizes due to alteration of the curvature following caspase-8 and Bid binding. Biophysical approaches, including Laurdan fluorescence and rupture/tension measurements, were used to determine the ability of these three components (cardiolipin, caspase-8 and Bid) to fulfil the minimal requirements for the formation and function of the platform at the mitochondrial membrane. Our results shed light on the active functional role of cardiolipin, bridging the gap between death receptors and mitochondria
    • …
    corecore