Direct detection of dark matter (DM) requires an interaction of dark matter
particles with nucleons. The same interaction can lead to dark matter pair
production at a hadron collider, and with the addition of initial state
radiation this may lead to mono-jet signals. Mono-jet searches at the Tevatron
can thus place limits on DM direct detection rates. We study these bounds both
in the case where there is a contact interaction between DM and the standard
model and where there is a mediator kinematically accessible at the Tevatron.
We find that in many cases the Tevatron provides the current best limit,
particularly for light dark matter, below 5 GeV, and for spin dependent
interactions. Non-standard dark matter candidates are also constrained. The
introduction of a light mediator significantly weakens the collider bound. A
direct detection discovery that is in apparent conflict with mono-jet limits
will thus point to a new light state coupling the standard model to the dark
sector. Mono-jet searches with more luminosity and including the spectrum shape
in the analysis can improve the constraints on DM-nucleon scattering cross
section.Comment: 20 pages, 8 figures, final version in JHE