580 research outputs found
Electron Spin Relaxation in a Semiconductor Quantum Well
A fully microscopic theory of electron spin relaxation by the
D'yakonov-Perel' type spin-orbit coupling is developed for a semiconductor
quantum well with a magnetic field applied in the growth direction of the well.
We derive the Bloch equations for an electron spin in the well and define
microscopic expressions for the spin relaxation times. The dependencies of the
electron spin relaxation rate on the lowest quantum well subband energy,
magnetic field and temperature are analyzed.Comment: Revised version as will appear in Physical Review
Electron Spin Decoherence in Bulk and Quantum Well Zincblende Semiconductors
A theory for longitudinal (T1) and transverse (T2) electron spin coherence
times in zincblende semiconductor quantum wells is developed based on a
non-perturbative nanostructure model solved in a fourteen-band restricted basis
set. Distinctly different dependences of coherence times on mobility,
quantization energy, and temperature are found from previous calculations.
Quantitative agreement between our calculations and measurements is found for
GaAs/AlGaAs, InGaAs/InP, and GaSb/AlSb quantum wells.Comment: 11 pages, 3 figure
Do solar neutrinos decay?
Despite the fact that the solar neutrino flux is now well-understood in the
context of matter-affected neutrino mixing, we find that it is not yet possible
to set a strong and model-independent bound on solar neutrino decays. If
neutrinos decay into truly invisible particles, the Earth-Sun baseline defines
a lifetime limit of \tau/m \agt 10^{-4} s/eV. However, there are many
possibilities which must be excluded before such a bound can be established.
There is an obvious degeneracy between the neutrino lifetime and the mixing
parameters. More generally, one must also allow the possibility of active
daughter neutrinos and/or antineutrinos, which may partially conceal the
characteristic features of decay. Many of the most exotic possibilities that
presently complicate the extraction of a decay bound will be removed if the
KamLAND reactor antineutrino experiment confirms the large-mixing angle
solution to the solar neutrino problem and measures the mixing parameters
precisely. Better experimental and theoretical constraints on the B
neutrino flux will also play a key role, as will tighter bounds on absolute
neutrino masses. Though the lifetime limit set by the solar flux is weak, it is
still the strongest direct limit on non-radiative neutrino decay. Even so,
there is no guarantee (by about eight orders of magnitude) that neutrinos from
astrophysical sources such as a Galactic supernova or distant Active Galactic
Nuclei will not decay.Comment: Very minor corrections, corresponds to published versio
Measurement of the branching fraction for
We have studied the leptonic decay of the resonance into tau
pairs using the CLEO II detector. A clean sample of tau pair events is
identified via events containing two charged particles where exactly one of the
particles is an identified electron. We find . The result is consistent with
expectations from lepton universality.Comment: 9 pages, RevTeX, two Postscript figures available upon request, CLNS
94/1297, CLEO 94-20 (submitted to Physics Letters B
Multilaboratory evaluation of methods for detecting enteric viruses in soils.
Two candidate methods for the recovery and detection of viruses in soil were subjected to round robin comparative testing by members of the American Society for Testing and Materials D19:24:04:04 Subcommittee Task Group. Selection of the methods, designated "Berg" and "Goyal," was based on results of an initial screening which indicated that both met basic criteria considered essential by the task group. Both methods utilized beef extract solutions to achieve desorption and recovery of viruses from representative soils: a fine sand soil, an organic muck soil, a sandy loam soil, and a clay loam soil. One of the two methods, Goyal, also used a secondary concentration of resulting soil eluants via low-pH organic flocculation to achieve a smaller final assay volume. Evaluation of the two methods was simultaneously performed in replicate by nine different laboratories. Each of the produced samples was divided into portions, and these were respectively subjected to quantitative viral plaque assay by both the individual, termed independent, laboratory which had done the soil processing and a single common reference laboratory, using a single cell line and passage level. The Berg method seemed to produce slightly higher virus recovery values; however, the differences in virus assay titers for samples produced by the two methods were not statistically significant (P less than or equal to 0.05) for any one of the four soils. Despite this lack of a method effect, th
Measurement of the branching fraction
The branching fraction is measured in a data sample
corresponding to 0.41 of integrated luminosity collected with the LHCb
detector at the LHC. This channel is sensitive to the penguin contributions
affecting the sin2 measurement from The
time-integrated branching fraction is measured to be . This is the most precise measurement to
date
Measurement of the ratio of branching fractions BR(B0 -> K*0 gamma)/BR(Bs0 -> phi gamma) and the direct CP asymmetry in B0 -> K*0 gamma
The ratio of branching fractions of the radiative B decays B0 -> K*0 gamma
and Bs0 phi gamma has been measured using an integrated luminosity of 1.0 fb-1
of pp collision data collected by the LHCb experiment at a centre-of-mass
energy of sqrt(s)=7 TeV. The value obtained is BR(B0 -> K*0 gamma)/BR(Bs0 ->
phi gamma) = 1.23 +/- 0.06(stat.) +/- 0.04(syst.) +/- 0.10(fs/fd), where the
first uncertainty is statistical, the second is the experimental systematic
uncertainty and the third is associated with the ratio of fragmentation
fractions fs/fd. Using the world average value for BR(B0 -> K*0 gamma), the
branching fraction BR(Bs0 -> phi gamma) is measured to be (3.5 +/- 0.4) x
10^{-5}.
The direct CP asymmetry in B0 -> K*0 gamma decays has also been measured with
the same data and found to be A(CP)(B0 -> K*0 gamma) = (0.8 +/- 1.7(stat.) +/-
0.9(syst.))%.
Both measurements are the most precise to date and are in agreement with the
previous experimental results and theoretical expectations.Comment: 21 pages, 3 figues, 4 table
First observation of the decay and a measurement of the ratio of branching fractions
The first observation of the decay using
data collected by the LHCb detector at a centre-of-mass energy of 7 TeV,
corresponding to an integrated luminosity of 36 pb, is reported. A
signal of events is obtained and the absence of signal is
rejected with a statistical significance of more than nine standard deviations.
The branching fraction is measured relative to
that of : , where the first uncertainty is statistical, the second systematic and
the third is due to the uncertainty on the ratio of the and
hadronisation fractions.Comment: 10 pages, 3 figures, submitted to Phys. Lett. B; ISSN 0370-269
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in âs = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fbâ1 of protonâproton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS
The chi_b(nP) quarkonium states are produced in proton-proton collisions at
the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS
detector. Using a data sample corresponding to an integrated luminosity of 4.4
fb^-1, these states are reconstructed through their radiative decays to
Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks
corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new
structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is
also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes.
This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table,
corrected author list, matches final version in Physical Review Letter
- âŠ