191 research outputs found

    Some algorithms to solve a bi-objectives problem for team selection

    Get PDF
    In real life, many problems are instances of combinatorial optimization. Cross-functional team selection is one of the typical issues. The decision-maker has to select solutions among (kh) solutions in the decision space, where k is the number of all candidates, and h is the number of members in the selected team. This paper is our continuing work since 2018; here, we introduce the completed version of the Min Distance to the Boundary model (MDSB) that allows access to both the "deep" and "wide" aspects of the selected team. The compromise programming approach enables decision-makers to ignore the parameters in the decision-making process. Instead, they point to the one scenario they expect. The aim of model construction focuses on finding the solution that matched the most to the expectation. We develop two algorithms: one is the genetic algorithm and another based on the philosophy of DC programming (DC) and its algorithm (DCA) to find the optimal solution. We also compared the introduced algorithms with the MIQP-CPLEX search algorithm to show their effectiveness

    Detection and monitoring of cancers with biosensors in Vietnam

    Get PDF
    Biosensors are able to provide fast, accurate and reliable detec-tions and monitoring of cancer cells, as well as to determine the effectiveness of anticancer chemotherapy agents in cancer treatments. These have attracted a great attention of research communities, especially in the capabilities of detecting the path-ogens, viruses and cancer cells in narrow scale that the conven-tional apparatus and techniques do not have. This paper pre-sents technologies and applications of biosensors for detections of cancer cells and related diseases, with the focus on the cur-rent research and technology development about biosensors in Vietnam, a typical developing country with a very high number of patients diagnosed with cancers in recent years, but having a very low cancer survival rate. The role of biosensors in early detections of diseases, cancer screening, diagnosis and treat-ment, is more and more important; especially it is estimated that by 2020, 60-70% new cases of cancers and nearly 70% of cancer deaths will be in economically disadvantaged countries. The paper is also aimed to open channels for the potential R&D collaborations with partners in Vietnam in the areas of innovative design and development of biosensors in particular and medical technology devices in general

    Detection of gait initiation Failure in Parkinson's disease based on wavelet transform and Support Vector Machine

    Full text link
    © 2017 IEEE. Gait initiation Failure (GIF) is the situation in which patients with Parkinson's disease (PD) feel as if their feet get 'stuck' to the floor when initiating their first steps. GIF is a subtype of Freezing of Gait (FOG) and often leads to falls and related injuries. Understanding of neurobiological mechanisms underlying GIF has been limited by difficulties in eliciting and objectively characterizing such gait phenomena in the clinical setting. Studies investigating the effects of GIF on brain activity using EEG offer the potential to study such behavior. In this preliminary study, we present a novel methodology where wavelet transform was used for feature extraction and Support Vector Machine for classifying GIF events in five patients with PD and FOG. To deal with the large amount of EEG data, a Principal Component Analysis (PCA) was applied to reduce the data dimension from 15 EEG channels into 6 principal components (PCs), retaining 93% of the information. Independent Component Analysis using Entropy Bound Minimization (ICA-EBM) was applied to 6 PCs for source separation with the aim of improving detection ability of GIF events as compared to the normal initiation of gait (Good Starts). The results of this analysis demonstrated the correct identification of GIF episodes with an 83.1% sensitivity, 89.5% specificity and 86.3% accuracy. These results suggest that our proposed methodology is a promising non-invasive approach to improve GIF detection in PD and FOG

    Solving parabolic equations on the unit sphere via Laplace transforms and radial basis functions

    Full text link
    We propose a method to construct numerical solutions of parabolic equations on the unit sphere. The time discretization uses Laplace transforms and quadrature. The spatial approximation of the solution employs radial basis functions restricted to the sphere. The method allows us to construct high accuracy numerical solutions in parallel. We establish L2L_2 error estimates for smooth and nonsmooth initial data, and describe some numerical experiments.Comment: 26 pages, 1 figur

    Antibody landscapes after influenza virus infection or vaccination.

    Get PDF
    We introduce the antibody landscape, a method for the quantitative analysis of antibody-mediated immunity to antigenically variable pathogens, achieved by accounting for antigenic variation among pathogen strains. We generated antibody landscapes to study immune profiles covering 43 years of influenza A/H3N2 virus evolution for 69 individuals monitored for infection over 6 years and for 225 individuals pre- and postvaccination. Upon infection and vaccination, titers increased broadly, including previously encountered viruses far beyond the extent of cross-reactivity observed after a primary infection. We explored implications for vaccination and found that the use of an antigenically advanced virus had the dual benefit of inducing antibodies against both advanced and previous antigenic clusters. These results indicate that preemptive vaccine updates may improve influenza vaccine efficacy in previously exposed individuals.This is the author’s version of the work. It will be under embargo for 6 months following publication. It is posted here by permission of the AAAS for personal use, not for redistribution. The final version is available from AAAS in Science at http://www.sciencemag.org/content/346/6212/996.long

    High-Resolution Genotyping of the Endemic Salmonella Typhi Population during a Vi (Typhoid) Vaccination Trial in Kolkata

    Get PDF
    Typhoid fever is caused by the bacterium Salmonella enterica serovar Typhi (S. Typhi) and is a major health problem especially in developing countries. Vaccines against typhoid are commonly used by travelers but less so by residents of endemic areas. We used single nucleotide polymorphism (SNP) typing to investigate the population structure of 372 S. Typhi bacteria isolated from typhoid patients during a typhoid disease burden study and Vi anti-typhoid vaccine trial in Kolkata, India. Approximately sixty thousand people were enrolled for fever surveillance for 19 months prior to, and 24 months following, vaccination of one third of the study population against typhoid (May 2003–December 2006, vaccinations given December 2004). We detected a diverse population of S. Typhi, including 21 different genetic forms (haplotypes) of the bacteria. The most common (69%) were of a haplogroup known as H58, which included all multidrug resistant isolates (bacteria resistant to the antibiotics chloramphenicol, ampicillin and co-trimoxazole). Resistance to quinolones, a class of antibiotics commonly used to treat typhoid fever, was particularly high among a subgroup of H58 (H58-G). Vi vaccination did not obviously impact on the haplotype distribution of the S. Typhi circulating during the study period

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the cross-section for high transverse momentum W and Z bosons produced in pp collisions and decaying to all-hadronic final states. The data used in the analysis were recorded by the ATLAS detector at the CERN Large Hadron Collider at a centre-of-mass energy of √s = 7 TeV;{\rm Te}{\rm V}andcorrespondtoanintegratedluminosityof and correspond to an integrated luminosity of 4.6\;{\rm f}{{{\rm b}}^{-1}}.ThemeasurementisperformedbyreconstructingtheboostedWorZbosonsinsinglejets.ThereconstructedjetmassisusedtoidentifytheWandZbosons,andajetsubstructuremethodbasedonenergyclusterinformationinthejetcentreofmassframeisusedtosuppressthelargemultijetbackground.ThecrosssectionforeventswithahadronicallydecayingWorZboson,withtransversemomentum. The measurement is performed by reconstructing the boosted W or Z bosons in single jets. The reconstructed jet mass is used to identify the W and Z bosons, and a jet substructure method based on energy cluster information in the jet centre-of-mass frame is used to suppress the large multi-jet background. The cross-section for events with a hadronically decaying W or Z boson, with transverse momentum {{p}_{{\rm T}}}\gt 320\;{\rm Ge}{\rm V}andpseudorapidity and pseudorapidity |\eta |\lt 1.9,ismeasuredtobe, is measured to be {{\sigma }_{W+Z}}=8.5\pm 1.7$ pb and is compared to next-to-leading-order calculations. The selected events are further used to study jet grooming techniques

    3D extracellular matrix microenvironment in bioengineered tissue models of primary pediatric and adult brain tumors.

    Get PDF
    Dynamic alterations in the unique brain extracellular matrix (ECM) are involved in malignant brain tumors. Yet studies of brain ECM roles in tumor cell behavior have been difficult due to lack of access to the human brain. We present a tunable 3D bioengineered brain tissue platform by integrating microenvironmental cues of native brain-derived ECMs and live imaging to systematically evaluate patient-derived brain tumor responses. Using pediatric ependymoma and adult glioblastoma as examples, the 3D brain ECM-containing microenvironment with a balance of cell-cell and cell-matrix interactions supports distinctive phenotypes associated with tumor type-specific and ECM-dependent patterns in the tumor cells\u27 transcriptomic and release profiles. Label-free metabolic imaging of the composite model structure identifies metabolically distinct sub-populations within a tumor type and captures extracellular lipid-containing droplets with potential implications in drug response. The versatile bioengineered 3D tumor tissue system sets the stage for mechanistic studies deciphering microenvironmental role in brain tumor progression

    An intestinal epithelial defect conferring ER stress results in inflammation involving both innate and adaptive immunity

    Get PDF
    We recently characterized Winnie mice carrying a missense mutation in Muc2, leading to severe endoplasmic reticulum stress in intestinal goblet cells and spontaneous colitis. In this study, we characterized the immune responses due to this intestinal epithelial dysfunction. In Winnie, there was a fourfold increase in activated dendritic cells (DCs; CD11c+ major histocompatibility complex (MHC) class IIhi) in the colonic lamina propria accompanied by decreased colonic secretion of an inhibitor of DC activation, thymic stromal lymphopoietin (TSLP). Winnie also displayed a significant increase in mRNA expression of the mucosal TH17 signature genes Il17a, IL17f, Tgfb, and Ccr6, particularly in the distal colon. Winnie mesenteric lymph node leukocytes secreted multiple TH1, TH2, and TH17 cytokines on activation, with a large increase in interleukin-17A (IL-17A) progressively with age. A major source of mucosal IL-17A in Winnie was CD4+ T lymphocytes. Loss of T and B lymphocytes in Rag1-/- × Winnie (RaW) crosses did not prevent spontaneous inflammation but did prevent progression with age in the colon but not the cecum. Adoptive transfer of naive T cells into RaW mice caused more rapid and severe colitis than in Rag1-/-, indicating that the epithelial defect results in an intestinal microenvironment conducive to T-cell activation. Thus, the Winnie primary epithelial defect results in complex multicytokine-mediated colitis involving both innate and adaptive immune components with a prominent IL-23/TH17 response, similar to that of human ulcerative colitis
    corecore