1,980 research outputs found

    Nanoscale interaction of RecG with mobile fork DNA

    Get PDF
    RecG DNA helicase is a guardian of the bacterial genome where it dominates stalled DNA replication fork rescue. The single-stranded DNA binding protein (SSB) is involved in this process and promotes the binding of RecG to stalled replication forks. Atomic force microscopy (AFM) was used to investigate the interaction of RecG and SSB on a mobile fork substrate capable of being regressed. In the absence of proteins, the fork undergoes spontaneous dynamics between two states, defined by the length of the DNA complementarity at the fork. The binding of SSB does not affect these dynamics as it binds to single-stranded regions as expected. In contrast, RecG interacts with the two states quite differently. We demonstrate that RecG has two modes of interaction with fork DNA in the presence of SSB and ATP. In the first mode, RecG translocates over the duplex region and this activity is defined by SSB-mediated remodeling of helicase. In the second mode, RecG utilizes its helicase activity to regress the fork, in an ATP-dependent manner, displacing SSB on the ssDNA. Overall, our results highlight two functions of RecG that can be employed in the regulation of stalled DNA replication fork rescue. This journal is © The Royal Society of Chemistry

    Remodeling of RecG Helicase at the DNA Replication Fork by SSB Protein.

    Get PDF
    The RecG DNA helicase a key player in stalled replication fork rescue. The single-stranded DNA binding protein (SSB) participates in this process, but its role in the interaction of RecG with the fork remains unclear. We used atomic force microscopy (AFM) to visualize the interaction of RecG with a fork DNA in the presence of SSB. We discovered that SSB enhances RecG loading efficiency onto the DNA fork by threefold. Additionally, SSB interacts with RecG leading to the RecG remodeling. As a result, RecG separates from the fork, but remains bound to the DNA duplex. Moreover, in this new binding mode RecG is capable of translocation along the parental duplex DNA. We propose a model of RecG interaction with the replication fork involving two RecG binding modes. SSB plays the role of a remodeling factor defining the mode of RecG binding to the fork mediated by the SSB C-terminus. In the translocating mode, RecG remains in the vicinity of the fork and is capable of initiating the fork regression. Our results afford novel mechanistic insights into RecG interaction with the replication fork and provide the basis for further structural studies

    Type I restriction endonucleases are true catalytic enzymes

    Get PDF
    Type I restriction endonucleases are intriguing, multifunctional complexes that restrict DNA randomly, at sites distant from the target sequence. Restriction at distant sites is facilitated by ATP hydrolysis-dependent, translocation of double-stranded DNA towards the stationary enzyme bound at the recognition sequence. Following restriction, the enzymes are thought to remain associated with the DNA at the target site, hydrolyzing copious amounts of ATP. As a result, for the past 35 years type I restriction endonucleases could only be loosely classified as enzymes since they functioned stoichiometrically relative to DNA. To further understand enzyme mechanism, a detailed analysis of DNA cleavage by the EcoR124I holoenzyme was done. We demonstrate for the first time that type I restriction endonucleases are not stoichiometric but are instead catalytic with respect to DNA. Further, the mechanism involves formation of a dimer of holoenzymes, with each monomer bound to a target sequence and, following cleavage, each dissociates in an intact form to bind and restrict subsequent DNA molecules. Therefore, type I restriction endonucleases, like their type II counterparts, are true enzymes. The conclusion that type I restriction enzymes are catalytic relative to DNA has important implications for the in vivo function of these previously enigmatic enzymes

    How the First Year of the COVID-19 Pandemic Impacted Patients’ Hospital Admission and Care in the Vascular Surgery Divisions of the Southern Regions of the Italian Peninsula

    Get PDF
    Background: To investigate the effects of the COVID-19 lockdowns on the vasculopathic population. Methods: The Divisions of Vascular Surgery of the southern Italian peninsula joined this multicenter retrospective study. Each received a 13-point questionnaire investigating the hospitalization rate of vascular patients in the first 11 months of the COVID-19 pandemic and in the preceding 11 months. Results: 27 out of 29 Centers were enrolled. April-December 2020 (7092 patients) vs. 2019 (9161 patients): post-EVAR surveillance, hospitalization for Rutherford category 3 peripheral arterial disease, and asymptomatic carotid stenosis revascularization significantly decreased (1484 (16.2%) vs. 1014 (14.3%), p = 0.0009; 1401 (15.29%) vs. 959 (13.52%), p = 0.0006; and 1558 (17.01%) vs. 934 (13.17%), p < 0.0001, respectively), while admissions for revascularization or major amputations for chronic limb-threatening ischemia and urgent revascularization for symptomatic carotid stenosis significantly increased (1204 (16.98%) vs. 1245 (13.59%), p < 0.0001; 355 (5.01%) vs. 358 (3.91%), p = 0.0007; and 153 (2.16%) vs. 140 (1.53%), p = 0.0009, respectively). Conclusions: The suspension of elective procedures during the COVID-19 pandemic caused a significant reduction in post-EVAR surveillance, and in the hospitalization of asymptomatic carotid stenosis revascularization and Rutherford 3 peripheral arterial disease. Consequentially, we observed a significant increase in admissions for urgent revascularization for symptomatic carotid stenosis, as well as for revascularization or major amputations for chronic limb-threatening ischemia

    Neuroimaging in cluster headache and other trigeminal autonomic cephalalgias

    Get PDF
    The central nervous system mechanisms involved in trigeminal autonomic cephalalgias, a group of primary headaches characterized by strictly unilateral head pain that occurs in association with ipsilateral craniofacial autonomic features, are still not comprehensively understood. However, functional imaging methods have revolutionized our understanding of mechanisms involved in these primary headache syndromes. The present review provides a brief overview of the major modern functional neuroimaging techniques used to examine brain structure, biochemistry, metabolic state, and functional capacity. The available functional neuroimaging data in cluster headache and other TACs will thus be summarized. Although the precise brain structures responsible for these primary headache syndromes still remain to be determined, neuroimaging data suggest a major role for posterior hypothalamus activation in initiating and maintaining attacks. Furthermore, pathophysiological involvement of the pain neuromatrix and of the central descending opiatergic pain control system was observed. Given the rapid advances in functional and structural neuroimaging methodologies, it can be expected that these non-invasive techniques will continue to improve our understanding into the nature of the brain dysfunction in cluster headache and other trigeminal autonomic cephalalgias

    CMS physics technical design report : Addendum on high density QCD with heavy ions

    Get PDF
    Peer reviewe

    Search for massive resonances in dijet systems containing jets tagged as W or Z boson decays in pp collisions at √s=8 TeV

    Get PDF
    Peer reviewe

    Search for standard model production of four top quarks in the lepton + jets channel in pp collisions at √s = 8 TeV

    Get PDF
    Open Access, Copyright CERN, for the benefit of the CMS Collaboration. Article funded by SCOAP3.Abstract: A search is presented for standard model (SM) production of four top quarks (Formula presented.) in pp collisions in the lepton + jets channel. The data correspond to an integrated luminosity of 19.6 fb−1 recorded at a centre-of-mass energy of 8 TeV with the CMS detector at the CERN LHC. The expected cross section for SM (Formula presented.) production is (Formula presented.). A combination of kinematic reconstruction and multivariate techniques is used to distinguish between the small signal and large background. The data are consistent with expectations of the SM, and an upper limit of 32 fb is set at a 95% confidence level on the cross section for producing four top quarks in the SM, where a limit of 32 ± 17 fb is expected

    Differential cross section measurements for the production of a W boson in association with jets in proton–proton collisions at √s = 7 TeV

    Get PDF
    Measurements are reported of differential cross sections for the production of a W boson, which decays into a muon and a neutrino, in association with jets, as a function of several variables, including the transverse momenta (pT) and pseudorapidities of the four leading jets, the scalar sum of jet transverse momenta (HT), and the difference in azimuthal angle between the directions of each jet and the muon. The data sample of pp collisions at a centre-of-mass energy of 7 TeV was collected with the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 fb[superscript −1]. The measured cross sections are compared to predictions from Monte Carlo generators, MadGraph + pythia and sherpa, and to next-to-leading-order calculations from BlackHat + sherpa. The differential cross sections are found to be in agreement with the predictions, apart from the pT distributions of the leading jets at high pT values, the distributions of the HT at high-HT and low jet multiplicity, and the distribution of the difference in azimuthal angle between the leading jet and the muon at low values.United States. Dept. of EnergyNational Science Foundation (U.S.)Alfred P. Sloan Foundatio
    corecore