255 research outputs found

    Troubling Vulnerability: Designing with LGBT Young People's Ambivalence Towards Hate Crime Reporting

    Get PDF
    HCI is increasingly working with ‘vulnerable’ people yet there is a danger that the label of vulnerability can alienate and stigmatize the people such work aims to support. We report our study investigating the application of interaction design to increase rates of hate crime reporting amongst Lesbian, Gay, Bisexual and Transgender young people. During design-led workshops participants expressed ambivalence towards reporting. While recognizing their exposure to hate crime they simultaneously rejected ascription as victim as implied in the act of reporting. We used visual communication design to depict the young people’s ambivalent identities and contribute insights on how these fail and succeed to account for the intersectional, fluid and emergent nature of LGBT identities through the design research process. We argue that by producing ambiguous designed texts, alongside conventional qualitative data, we ‘trouble’ our design research narratives as a tactic to disrupt static and reductive understandings of vulnerability within HCI

    Forces between clustered stereocilia minimize friction in the ear on a subnanometre scale

    Full text link
    The detection of sound begins when energy derived from acoustic stimuli deflects the hair bundles atop hair cells. As hair bundles move, the viscous friction between stereocilia and the surrounding liquid poses a fundamental challenge to the ear's high sensitivity and sharp frequency selectivity. Part of the solution to this problem lies in the active process that uses energy for frequency-selective sound amplification. Here we demonstrate that a complementary part involves the fluid-structure interaction between the liquid within the hair bundle and the stereocilia. Using force measurement on a dynamically scaled model, finite-element analysis, analytical estimation of hydrodynamic forces, stochastic simulation and high-resolution interferometric measurement of hair bundles, we characterize the origin and magnitude of the forces between individual stereocilia during small hair-bundle deflections. We find that the close apposition of stereocilia effectively immobilizes the liquid between them, which reduces the drag and suppresses the relative squeezing but not the sliding mode of stereociliary motion. The obliquely oriented tip links couple the mechanotransduction channels to this least dissipative coherent mode, whereas the elastic horizontal top connectors stabilize the structure, further reducing the drag. As measured from the distortion products associated with channel gating at physiological stimulation amplitudes of tens of nanometres, the balance of forces in a hair bundle permits a relative mode of motion between adjacent stereocilia that encompasses only a fraction of a nanometre. A combination of high-resolution experiments and detailed numerical modelling of fluid-structure interactions reveals the physical principles behind the basic structural features of hair bundles and shows quantitatively how these organelles are adapted to the needs of sensitive mechanotransduction.Comment: 21 pages, including 3 figures. For supplementary information, please see the online version of the article at http://www.nature.com/natur

    Walking the tightrope: communicating overdiagnosis in modern healthcare

    Get PDF
    Overdiagnosis and overtreatment have serious implications for individuals, healthcare systems, and society,1 2 and effective strategies are urgently needed to help the public, clinicians, and policy makers address this problem. Communication about overdiagnosis has been highlighted as essential for moving forward but presents several challenges, such as the potential to confuse the public, undermine trust, and adversely affect people who already have a diagnosis. Various communication based strategies offer real promise; we describe what is known and what we need to know to communicate effectively and safely about overdiagnosis and overtreatment. Key messages: Overdiagnosis provides no benefits to patients and is a challenge to the sustainability of modern healthcare systems Communication based strategies could help reduce overdiagnosis and its negative impact on individuals and health systems Mass media education, shared decision making, terminology changes for disease states, and deliberative methods (juries) all have potential as effective communication strategiesKJMcC is supported by a National Health and Medical Research Council (NHMRC) career development fellowship (1029241), JJ is supported by an NHMRC early career fellowship (1037028), and. JW is supported by a career development fellowship from Cancer Research UK (C7492/A17219)

    Mutations in protocadherin 15 and cadherin 23 affect tip links and mechanotransduction in mammalian sensory hair cells

    Get PDF
    Immunocytochemical studies have shown that protocadherin-15 (PCDH15) and cadherin-23 (CDH23) are associated with tip links, structures thought to gate the mechanotransducer channels of hair cells in the sensory epithelia of the inner ear. The present report describes functional and structural analyses of hair cells from Pcdh15av3J (av3J), Pcdh15av6J (av6J) and Cdh23v2J (v2J) mice. The av3J and v2J mice carry point mutations that are predicted to introduce premature stop codons in the transcripts for Pcdh15 and Cdh23, respectively, and av6J mice have an in-frame deletion predicted to remove most of the 9th cadherin ectodomain from PCDH15. Severe disruption of hair-bundle morphology is observed throughout the early-postnatal cochlea in av3J/av3J and v2J/v2J mice. In contrast, only mild-to-moderate bundle disruption is evident in the av6J/av6J mice. Hair cells from av3J/av3J mice are unaffected by aminoglycosides and fail to load with [3H]-gentamicin or FM1-43, compounds that permeate the hair cell's mechanotransducer channels. In contrast, hair cells from av6J/av6J mice load with both FM1-43 and [3H]-gentamicin, and are aminoglycoside sensitive. Transducer currents can be recorded from hair cells of all three mutants but are reduced in amplitude in all mutants and have abnormal directional sensitivity in the av3J/av3J and v2J/v2J mutants. Scanning electron microscopy of early postnatal cochlear hair cells reveals tip-link like links in av6J/av6J mice, substantially reduced numbers of links in the av3J/av3J mice and virtually none in the v2J/v2J mice. Analysis of mature vestibular hair bundles reveals an absence of tip links in the av3J/av3J and v2J/v2J mice and a reduction in av6J/av6J mice. These results therefore provide genetic evidence consistent with PCDH15 and CDH23 being part of the tip-link complex and necessary for normal mechanotransduction

    Release of Severe Acute Respiratory Syndrome Coronavirus Nuclear Import Block Enhances Host Transcription in Human Lung Cells

    Get PDF
    The severe acute respiratory syndrome coronavirus accessory protein ORF6 antagonizes interferon signaling by blocking karyopherin-mediated nuclear import processes. Viral nuclear import antagonists, expressed by several highly pathogenic RNA viruses, likely mediate pleiotropic effects on host gene expression, presumably interfering with transcription factors, cytokines, hormones, and/or signaling cascades that occur in response to infection. By bioinformatic and systems biology approaches, we evaluated the impact of nuclear import antagonism on host expression networks by using human lung epithelial cells infected with either wild-type virus or a mutant that does not express ORF6 protein. Microarray analysis revealed significant changes in differential gene expression, with approximately twice as many upregulated genes in the mutant virus samples by 48 h postinfection, despite identical viral titers. Our data demonstrated that ORF6 protein expression attenuates the activity of numerous karyopherin-dependent host transcription factors (VDR, CREB1, SMAD4, p53, EpasI, and Oct3/4) that are critical for establishing antiviral responses and regulating key host responses during virus infection. Results were confirmed by proteomic and chromatin immunoprecipitation assay analyses and in parallel microarray studies using infected primary human airway epithelial cell cultures. The data strongly support the hypothesis that viral antagonists of nuclear import actively manipulate host responses in specific hierarchical patterns, contributing to the viral pathogenic potential in vivo. Importantly, these studies and modeling approaches not only provide templates for evaluating virus antagonism of nuclear import processes but also can reveal candidate cellular genes and pathways that may significantly influence disease outcomes following severe acute respiratory syndrome coronavirus infection in vivo

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    The molecular phylogeny of eph receptors and ephrin ligands

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The tissue distributions and functions of Eph receptors and their ephrin ligands have been well studied, however less is known about their evolutionary history. We have undertaken a phylogenetic analysis of Eph receptors and ephrins from a number of invertebrate and vertebrate species.</p> <p>Results</p> <p>Our findings indicate that Eph receptors form three major clades: one comprised of non-chordate and cephalochordate Eph receptors, a second comprised of urochordate Eph receptors, and a third comprised of vertebrate Eph receptors. Ephrins, on the other hand, fall into either a clade made up of the non-chordate and cephalochordate ephrins plus the urochordate and vertebrate ephrin-Bs or a clade made up of the urochordate and vertebrate ephrin-As.</p> <p>Conclusion</p> <p>We have concluded that Eph receptors and ephrins diverged into A and B-types at different points in their evolutionary history, such that primitive chordates likely possessed an ancestral ephrin-A and an ancestral ephrin-B, but only a single Eph receptor. Furthermore, ephrin-As appear to have arisen in the common ancestor of urochordates and vertebrates, whereas ephrin-Bs have a more ancient bilaterian origin. Ancestral ephrin-B-like ligands had transmembrane domains; as GPI anchors appear to have arisen or been lost at least 3 times.</p

    Harmonin-b, an actin-binding scaffold protein, is involved in the adaptation of mechanoelectrical transduction by sensory hair cells

    Get PDF
    We assessed the involvement of harmonin-b, a submembranous protein containing PDZ domains, in the mechanoelectrical transduction machinery of inner ear hair cells. Harmonin-b is located in the region of the upper insertion point of the tip link that joins adjacent stereocilia from different rows and that is believed to gate transducer channel(s) located in the region of the tip link's lower insertion point. In Ush1cdfcr-2J/dfcr-2J mutant mice defective for harmonin-b, step deflections of the hair bundle evoked transduction currents with altered speed and extent of adaptation. In utricular hair cells, hair bundle morphology and maximal transduction currents were similar to those observed in wild-type mice, but adaptation was faster and more complete. Cochlear outer hair cells displayed reduced maximal transduction currents, which may be the consequence of moderate structural anomalies of their hair bundles. Their adaptation was slower and displayed a variable extent. The latter was positively correlated with the magnitude of the maximal transduction current, but the cells that showed the largest currents could be either hyperadaptive or hypoadaptive. To interpret our observations, we used a theoretical description of mechanoelectrical transduction based on the gating spring theory and a motor model of adaptation. Simulations could account for the characteristics of transduction currents in wild-type and mutant hair cells, both vestibular and cochlear. They led us to conclude that harmonin-b operates as an intracellular link that limits adaptation and engages adaptation motors, a dual role consistent with the scaffolding property of the protein and its binding to both actin filaments and the tip link component cadherin-23
    corecore