1,200 research outputs found

    Interstate migration of the US poverty population: Immigration “pushes” and welfare magnet “pulls”

    Full text link
    This study evaluates the social and demographic structure of poverty migration during the 1985–90 period based on an analysis of recent census data. Particular attention is given to the roles of two policy-relevant factors that are proposed to be linked to poverty migration. The first of these is the role of immigration from abroad and its effect on the net out-migration of longer-term residents with below-poverty incomes, from States receiving the highest volume of immigrants. Such a response, it is argued, could result from job competition or other economic and social costs associated with immigration. The second involves the poverty population “magnet” effect associated with State welfare benefits (AFDC and Food Stamp payments) which has come under renewed scrutiny in light of the impending reform of the federal welfare program. The impact of both of these factors on interstate poverty migration is evaluated in a broader context that takes cognizance of other sociodemographic subgroups, and State-level attributes that are known to be relevant in explaining internal migration. This research employs an exceptionally rich data base of aggregate migration flows, specially tabulated from the full migration sample of the 1990 US census (based on the “residence 5 years ago” question). It also employs an analysis technique, the nested logit model, which identifies separately the “push” and “pull” effects of immigration, welfare benefits, and other State attributes on the migration process. Our findings are fairly clear. The high volume of immigration to selected US States does affect a selective out-migration of the poverty population, which is stronger for whites, Blacks and other non-Asian minorities as well as the least-educated. These results are consistent with arguments that internal migrants are responding to labor market competition from similarly educated immigrants. Moreover, we found that the impact of immigration occurs primarily as a “push” rather than a reduced “pull.” In contrast, State welfare benefits exert only minimal effects on the interstate migration of the poverty population—either as “pulls” or “pushes,” although some demographic segments of that population are more prone to respond than others. In addition to these findings, our results reveal the strong impact that a State's racial and ethnic composition exerts in both retaining and attracting migrants of like race and ethnic groups. This suggests the potential for a greater cross-state division in the US poverty population, by race and ethnic status.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43484/1/11111_2005_Article_BF02208337.pd

    New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.

    Get PDF
    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes

    Mortality Risk of Hypnotics: Strengths and Limits of Evidence

    Full text link
    Sleeping pills, more formally defined as hypnotics, are sedatives used to induce and maintain sleep. In a review of publications for the past 30 years, descriptive epidemiologic studies were identified that examined the mortality risk of hypnotics and related sedative-anxiolytics. Of the 34 studies estimating risk ratios, odds ratios, or hazard ratios, excess mortality associated with hypnotics was significant (p < 0.05) in 24 studies including all 14 of the largest, contrasted with no studies at all suggesting that hypnotics ever prolong life. The studies had many limitations: possibly tending to overestimate risk, such as possible confounding by indication with other risk factors; confusing hypnotics with drugs having other indications; possible genetic confounders; and too much heterogeneity of studies for meta-analyses. There were balancing limitations possibly tending towards underestimates of risk such as limited power, excessive follow-up intervals with possible follow-up mixing of participants taking hypnotics with controls, missing dosage data for most studies, and over-adjustment of confounders. Epidemiologic association in itself is not adequate proof of causality, but there is proof that hypnotics cause death in overdoses; there is thorough understanding of how hypnotics euthanize animals and execute humans; and there is proof that hypnotics cause potentially lethal morbidities such as depression, infection, poor driving, suppressed respiration, and possibly cancer. Combining these proofs with consistent evidence of association, the great weight of evidence is that hypnotics cause huge risks of decreasing a patient's duration of survival

    Nutrition and the ageing brain: moving towards clinical applications

    Get PDF
    The global increases in life expectancy and population have resulted in a growing ageing population and with it a growing number of people living with age-related neurodegenerative conditions and dementia, shifting focus towards methods of prevention, with lifestyle approaches such as nutrition representing a promising avenue for further development. This overview summarises the main themes discussed during the 3 Symposium on "Nutrition for the Ageing Brain: Moving Towards Clinical Applications" held in Madrid in August 2018, enlarged with the current state of knowledge on how nutrition influences healthy ageing and gives recommendations regarding how the critical field of nutrition and neurodegeneration research should move forward into the future. Specific nutrients are discussed as well as the impact of multi-nutrient and whole diet approaches, showing particular promise to combatting the growing burden of age-related cognitive decline. The emergence of new avenues for exploring the role of diet in healthy ageing, such as the impact of the gut microbiome and development of new techniques (imaging measures of brain metabolism, metabolomics, biomarkers) are enabling researchers to approach finding answers to these questions. But the translation of these findings into clinical and public health contexts remains an obstacle due to significant shortcomings in nutrition research or pressure on the scientific community to communicate recommendations to the general public in a convincing and accessible way. Some promising programs exist but further investigation to improve our understanding of the mechanisms by which nutrition can improve brain health across the human lifespan is still required

    Genome-Wide Association and Trans-ethnic Meta-Analysis for Advanced Diabetic Kidney Disease: Family Investigation of Nephropathy and Diabetes (FIND)

    Get PDF
    Diabetic kidney disease (DKD) is the most common etiology of chronic kidney disease (CKD) in the industrialized world and accounts for much of the excess mortality in patients with diabetes mellitus. Approximately 45% of U.S. patients with incident end-stage kidney disease (ESKD) have DKD. Independent of glycemic control, DKD aggregates in families and has higher incidence rates in African, Mexican, and American Indian ancestral groups relative to European populations. The Family Investigation of Nephropathy and Diabetes (FIND) performed a genome-wide association study (GWAS) contrasting 6,197 unrelated individuals with advanced DKD with healthy and diabetic individuals lacking nephropathy of European American, African American, Mexican American, or American Indian ancestry. A large-scale replication and trans-ethnic meta-analysis included 7,539 additional European American, African American and American Indian DKD cases and non-nephropathy controls. Within ethnic group meta-analysis of discovery GWAS and replication set results identified genome-wide significant evidence for association between DKD and rs12523822 on chromosome 6q25.2 in American Indians (P = 5.74x10-9). The strongest signal of association in the trans-ethnic meta-analysis was with a SNP in strong linkage disequilibrium with rs12523822 (rs955333; P = 1.31x10-8), with directionally consistent results across ethnic groups. These 6q25.2 SNPs are located between the SCAF8 and CNKSR3 genes, a region with DKD relevant changes in gene expression and an eQTL with IPCEF1, a gene co-translated with CNKSR3. Several other SNPs demonstrated suggestive evidence of association with DKD, within and across populations. These data identify a novel DKD susceptibility locus with consistent directions of effect across diverse ancestral groups and provide insight into the genetic architecture of DKD

    Opportunity for Genotype-Guided Prescribing Among Adult Patients in 11 US Health Systems.

    Get PDF
    The value of utilizing a multigene pharmacogenetic panel to tailor pharmacotherapy is contingent on the prevalence of prescribed medications with an actionable pharmacogenetic association. The Clinical Pharmacogenetics Implementation Consortium (CPIC) has categorized over 35 gene-drug pairs as "level A," for which there is sufficiently strong evidence to recommend that genetic information be used to guide drug prescribing. The opportunity to use genetic information to tailor pharmacotherapy among adult patients was determined by elucidating the exposure to CPIC level A drugs among 11 Implementing Genomics In Practice Network (IGNITE)-affiliated health systems across the US. Inpatient and/or outpatient electronic-prescribing data were collected between January 1, 2011 and December 31, 2016 for patients ≥ 18 years of age who had at least one medical encounter that was eligible for drug prescribing in a calendar year. A median of ~ 7.2 million adult patients was available for assessment of drug prescribing per year. From 2011 to 2016, the annual estimated prevalence of exposure to at least one CPIC level A drug prescribed to unique patients ranged between 15,719 (95% confidence interval (CI): 15,658-15,781) in 2011 to 17,335 (CI: 17,283-17,386) in 2016 per 100,000 patients. The estimated annual exposure to at least 2 drugs was above 7,200 per 100,000 patients in most years of the study, reaching an apex of 7,660 (CI: 7,632-7,687) per 100,000 patients in 2014. An estimated 4,748 per 100,000 prescribing events were potentially eligible for a genotype-guided intervention. Results from this study show that a significant portion of adults treated at medical institutions across the United States is exposed to medications for which genetic information, if available, should be used to guide prescribing

    Prescribing Prevalence of Medications With Potential Genotype-Guided Dosing in Pediatric Patients

    Get PDF
    Importance: Genotype-guided prescribing in pediatrics could prevent adverse drug reactions and improve therapeutic response. Clinical pharmacogenetic implementation guidelines are available for many medications commonly prescribed to children. Frequencies of medication prescription and actionable genotypes (genotypes where a prescribing change may be indicated) inform the potential value of pharmacogenetic implementation. Objective: To assess potential opportunities for genotype-guided prescribing in pediatric populations among multiple health systems by examining the prevalence of prescriptions for each drug with the highest level of evidence (Clinical Pharmacogenetics Implementation Consortium level A) and estimating the prevalence of potential actionable prescribing decisions. Design, setting, and participants: This serial cross-sectional study of prescribing prevalences in 16 health systems included electronic health records data from pediatric inpatient and outpatient encounters from January 1, 2011, to December 31, 2017. The health systems included academic medical centers with free-standing children's hospitals and community hospitals that were part of an adult health care system. Participants included approximately 2.9 million patients younger than 21 years observed per year. Data were analyzed from June 5, 2018, to April 14, 2020. Exposures: Prescription of 38 level A medications based on electronic health records. Main outcomes and measures: Annual prevalence of level A medication prescribing and estimated actionable exposures, calculated by combining estimated site-year prevalences across sites with each site weighted equally. Results: Data from approximately 2.9 million pediatric patients (median age, 8 [interquartile range, 2-16] years; 50.7% female, 62.3% White) were analyzed for a typical calendar year. The annual prescribing prevalence of at least 1 level A drug ranged from 7987 to 10 629 per 100 000 patients with increasing trends from 2011 to 2014. The most prescribed level A drug was the antiemetic ondansetron (annual prevalence of exposure, 8107 [95% CI, 8077-8137] per 100 000 children). Among commonly prescribed opioids, annual prevalence per 100 000 patients was 295 (95% CI, 273-317) for tramadol, 571 (95% CI, 557-586) for codeine, and 2116 (95% CI, 2097-2135) for oxycodone. The antidepressants citalopram, escitalopram, and amitriptyline were also commonly prescribed (annual prevalence, approximately 250 per 100 000 patients for each). Estimated prevalences of actionable exposures were highest for oxycodone and ondansetron (>300 per 100 000 patients annually). CYP2D6 and CYP2C19 substrates were more frequently prescribed than medications influenced by other genes. Conclusions and relevance: These findings suggest that opportunities for pharmacogenetic implementation among pediatric patients in the US are abundant. As expected, the greatest opportunity exists with implementing CYP2D6 and CYP2C19 pharmacogenetic guidance for commonly prescribed antiemetics, analgesics, and antidepressants

    Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk.

    Get PDF
    Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140 mm Hg systolic blood pressure or  ≥90 mm Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention
    corecore