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A Microstructurally Driven Model
for Pulmonary Artery Tissue
A new constitutive model for elastic, proximal pulmonary artery tissue is presented here,
called the total crimped fiber model. This model is based on the material and microstruc-
tural properties of the two main, passive, load-bearing components of the artery wall,
elastin, and collagen. Elastin matrix proteins are modeled with an orthotropic neo-
Hookean material. High stretch behavior is governed by an orthotropic crimped fiber
material modeled as a planar sinusoidal linear elastic beam, which represents collagen
fiber deformations. Collagen-dependent artery orthotropy is defined by a structure tensor
representing the effective orientation distribution of collagen fiber bundles. Therefore,
every parameter of the total crimped fiber model is correlated with either a physiologic
structure or geometry or is a mechanically measured material property of the composite
tissue. Further, by incorporating elastin orthotropy, this model better represents the me-
chanics of arterial tissue deformation. These advancements result in a microstructural
total crimped fiber model of pulmonary artery tissue mechanics, which demonstrates
good quality of fit and flexibility for modeling varied mechanical behaviors encountered
in disease states. �DOI: 10.1115/1.4002698�
Introduction
It is important to utilize a suitable constitutive model when

sing the tool of structural modeling to further the understanding
f pulmonary arterial hypertension �PAH�. Because PAH has
any effects on passive vascular wall properties and composition

1–9�, these effects should be captured within specific parameters
f the constitutive model. The extracellular matrix protein elastin
etermines the low-stretch stiffness of the artery and thus the pul-
onary vascular input impedance �1�. Collagen in the vessel wall

imits distension �2� and also contributes to vascular stiffness. The
rrangement of the fibers influences the anisotropy and stiffness of
he vessel wall. Changes due to PAH in elastin matrix stiffness �3�
nd collagen arrangement �4� should be captured in the model.
ecause pulmonary arteries remodel with PAH, we seek to de-
elop a constitutive model that captures the known changes in
oth pulmonary arterial elastin and collagen independently.

A constitutive model suitable for the artery wall under PAH and
ormal conditions should reproduce two characteristic features of
ascular tissues. These features are the J-shaped stress-stretch
urve observed under the application of tensile loads and the an-
sotropic nature observed when loading in different directions
2,5,6�. The J-shape is due to the delayed engagement of the so-
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called collagen fiber bundles �CFBs� �7–9�. CFBs, which are com-
mon structures in fibrous tissue such as tendon, artery, and skin, in
the artery wall, are tortuous �8� and lightly cross-linked �2�. This
feature has been modeled in the past using phenomenological
models of the Fung-type �10�, as well as rubberlike limited exten-
sion flexible chain models �11�; successfully �12,13�, but more
recently, the gradual recruitment and engagement of tortuous CFB
with increased stretch has been modeled �14–17�. CFB have also
been modeled using a crimped elastic fiber, which produces low
but nonzero forces at low stretch, but develops into linear elastic
behavior at high stretches �18–21�. The anisotropy of the artery
tissue is due to the underlying microstructural arrangement of the
CFB and elastin �22–26�. The anisotropy of the overall artery wall
was characterized by Patel and Fry as being orthotropic �5�. Re-
cently, it has been noted that arterial elastin, as well as CFB, has
orthotropic nature �26,27�, yet few models have taken this into
account �23�. Other models have used only an orthotropic struc-
ture in the collagen portion �14,28�. Recently, a model has been
developed with a distributed collagen fiber orientation so as to
more realistically capture the true effect of out-of-plane fibers
�15�.

This paper presents a two-part constitutive model representing
CFB and elastin. The CFB portion of the model not only uses a
distributed CFB orientation as in Ref. �15� but also incorporates a
second tunable axis for the orientation distribution. CFB are mod-
eled as sinusoidal elastic beams, which behave linear elastically,
as was found by Sasaki and Odajima �21�. This approach eschews

the use of an engagement distribution function, which lowers
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odel complexity. Drawing from test data on purified pulmonary
rtery �PA� elastin-only tissues, an orthotropic elastin model was
hosen �29�. The elastin is modeled using a neo-Hookean solid
27� with neo-Hookean fiber reinforcements �30�. This approach is
imilar to that used by Rezakhaniha and Stergiopulos �23� but
ses the neo-Hookean model for the isotropic contribution instead
f a modified neo-Hookean. This paper is organized as follows:
xperiments on calf tissue to obtain the data are first presented in
ec. 2. Based on experimental observations, the model is devel-
ped for 3D finite deformation in Sec. 3. In Sec. 4, the model is
pplied to uniaxial finite deformation and is compared with the
xperimental data. In Sec. 5, the effects of the parameters are
xplored.

Experimental Method
Mechanical tests of uniaxial tension of artery tissue in axial and

ircumferential directions were conducted. Due to the paucity of
est data on large pulmonary arteries, uniaxial tests were con-
ucted. For more details, see Ref. �3�. To collect data for the
nalysis and data fitting, proximal pulmonary artery tissue was
aken from a 2 week old hypertensive and normotensive calves
nd dissected to obtain samples for uniaxial strip tests. Pulmonary
ypertension was induced by holding the animal at a simulated
igh altitude for 2 weeks, causing hypoxia leading to hyperten-
ion. Strips were cut in the axial and circumferential directions
shown in Fig. 1� from the left and right branches, as well as the
ain trunk, and the portions of the arteries with branch points,

ocalized thickening, or other anomalies were avoided. Significant
fforts were made to keep the tissue slender. However, the thick-
ess of the sample dictates the width of the strip. A too narrow
trip would cause the strip to shear and twist when the grips were
ightened and can be easily damaged during sample processing.
he width of the strip was usually proportional to the thickness,
ut in some cases, the length of the tissue obtained was not suf-
cient enough to allow very slender strips while keeping the width
nd thickness proportional. The dimensions of the strips were de-
endent on the branch section and calf, with most having widths
f around 3–8 mm and lengths of 20–30 mm for branch sections
nd 40–60 mm for trunk sections. Length to width ratios were in
he range of 7–12. Loose connective tissue was trimmed from the
trips. Mechanical tests were conducted on a material mechanical
esting machine �Insight 2, MTS, Eden Prairie, MN� with an en-
ironmental bath filled with calcium-free phosphate buffered sa-
ine solution of pH 7.4 at 37°C. The contribution of smooth

uscle cell to PA mechanical behavior was evaluated by adding
ho-kinase inhibitors and contractile agents to the solution; we
ound no change in the mechanical behaviors of PA 2 h after
noculation. Typical maximum stretching force was �3 N, vary-
ng on the sample dimensions. A 5 N load cell afforded good
esolution in this force range while still capturing the high forces
xperienced at higher stretches. The strain rate was kept constant
t 10%/s. During testing, it was observed that the effect of the

ig. 1 Schematic of strips taken from excised pulmonary
rteries
lamping seen in the transverse direction decayed rapidly along
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the length to a range of less than 5 mm. Although the test is not as
accurate as using an extensometer, the results are accurate enough
to use for constitutive modeling. The tissues were tested usually
within 24 h of sacrifice and up to 48 h after sacrifice. No change
in material behavior was noted for tests performed on day one
through day three post-sacrifice. Drug tests were performed for
smooth muscle cell contraction and inhibition, with no quantifi-
able changes.

The maximum stretch applied to the strips was increased gradu-
ally as needed from a uniaxial stretch of 1.3 up to 1.8 for each
strip to determine the stretch necessary to engage the collagen
fiber bundles. To avoid tearing, significant damage, or breakage,
the sample was repeatedly unloaded to note the degree of damage
in the force-extension curves. Peak load was much lower than the
force to tear or damage the sample. Typical maximum stretches
were from 1.6 to 1.8. The specimens were then tested to that
stretch for ten cycles: nine for preconditioning, with the last cycle
used as the stress-stretch data for that specimen.

3 Modeling

3.1 Preliminaries. As a preliminary to the mechanics in this
paper, it is necessary to define the continuum mechanics used. The
conventions used in this paper largely follow Holzapfel �31�. The
right Cauchy–Green deformation tensor C and the finger tensor b
are defined as

C = FTF, b = FFT �1�

where F is the deformation gradient. If the strain energy density
function of an incompressible material is denoted as �, the second
Piola–Kirchhoff �PK� stress tensor is defined as

S = 2
��

�C
− pC−1 �2�

where p is the hydrostatic pressure. The first PK stress P and the
Cauchy stress � are calculated as

P = FS, � = J−1FSFT �3�

where J is the determinant of the deformation gradient. It is con-
venient to represent the strain energy function in terms of the
invariants of C. In the isotropic case,

� = ��I1,I2,J� �4a�
where

I1 = tr�C�

I2 = 1
2 �tr�C�2 − tr�C2��

J = det�F� �4b�

In the incompressible case, we require J=1; thus, the strain energy
depends only on the first and second invariants.

In the anisotropic case with one family of fibers, there are two
additional invariants pertaining to the deformation of the fibers. If
the fibers are aligned in the direction of a0, then the structure
tensor following Spencer �32� is defined as

A0 = a0 � a0 �5�
and the invariants describing the deformation of the fiber family
are

I4 = C:A0, I5 = C2:A0 �6�
The fourth invariant has a straightforward meaning and can be
calculated as

I4 = �a
2 �7�

where �a is the fiber stretch and the fifth invariant is related to

how the fibers couple to shear deformations. In this analysis, we
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se a unit vector a to denote a0 in the current coordinates. Thus, a
s calculated as

a =
Fa0

�Fa0�
�8�

n the case of two fiber families, there are five additional invari-
nts of the deformation tensor. If the fibers are aligned in the
irections of a0 and g0, then the structure tensors characterizing
hese fiber families are

A0 = a0 � a0, G0 = g0 � g0 �9�

n addition to the invariants from the transversely isotropic case,
4 and I5, there are four additional invariants. The first two are
alculated similar to I4 and I5 as

I6 = C:G0, I7 = C2:G0 �10a�

he eighth and ninth invariants use both structure tensors from the
ber families and are calculated as

I8 = tr�CA0G0�, I9 = tr�A0G0� �10b�

f a0 and g0 are orthogonal to one another, the eighth invariant is
dentically zero and thus, does not enter in to the calculations.
ollowing Holzapfel et al. �28�, it is assumed that artery tissue is

ncompressible and does not depend on the invariants involving
2. The latter is made for a number of reasons: to reduce the
umber of material constants and also to reduce the complexity of
he model. Thus, we consider invariants I1, I4, and I6 with the
onstraint that J=1.

If we consider the extension of a single fiber of length LF with
ross-section area AF and deformed by observed stretch �F, the
nergy �F is given by

�F��F� = AFLF�
1

�F

PFd� �11�

here PF is the nominal stress in a fiber. With the force in the
ber FF equal to the nominal stress times the area AF, the energy
an be written in terms of the force generated by the fiber as

�F��F� = LF�
1

�F

FFd� �12�

t is important to remember that when using this energy, it is not a
train energy density but the total energy of the fiber.

3.2 Modeling an Individual Collagen Fiber Bundle. In or-
er to model an isolated collagen fiber bundle, it is assumed that
he collagen fiber bundles have a wavy configuration in the artery
all. The planar case is considered here, as was adopted previ-
usly �20,33,34�. Comninou and Yannas �18� developed a consti-
utive model for tendons consisting of sinusoidal collagen fiber
undles termed as crimped fibers. In Comninou and Yannas �18�,
nly small stretches and small-amplitude fiber crimp were consid-
red. In this section of the paper, the crimped fiber model is ex-
ended to nonlinear stretch behavior. The crimped fiber model
implifies a collagen fiber bundle into a planar sinusoidal elastic
eam. Because the material deformation of the collagen fibers is
uch less than the observed apparent deformation, the force can

e calculated using a small deformation material formulation. The
mall deformation case holds for collagen material deformations
p to 10%. The fiber has a given elastic modulus E, cross-
ectional area A, second moment of inertia I, period 4l0=2� /b,
nd amplitude a, as shown in Fig. 2. The parameter b is the spatial
requency of the sinusoid.

The undeformed and deformed contour lengths of the fiber are
enoted as L0

C and LC, respectively. The projected length of the
ndeformed fiber is L0, and the deformed is L. It is important to

nderstand the difference between the projected length and the

ournal of Biomechanical Engineering
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contour length as the average stretch internal to the fiber, defined
as �c=Lc /Lc

0, gives rise to the force and the apparent stretch,
defined as �F=L /L0, relates to the overall material deformation.

If the undeformed beam is described by

y = a sin bx �13�

where a is the amplitude and b is the spatial frequency of the
sinusoid, then the total contour length of the beam is

L0
C = �1 + a2b2E	� a2b2

1 + a2b2
L0 �14�

where E� · � is the complete elliptic integral of the second kind.
Using the linearization of error O�a3b3 /3� applied by Comninou
and Yannas �18�, under the application of the tensile load FF, the
beam is assumed to deform to a sinusoidal shape with a smaller
amplitude but longer wavelength expressed as

y = a�A sin
b

�F
x �15�

where �A is the ratio of the current amplitude to the original
amplitude calculated as

�A =
b2

�2 + b2 �16�

where � relates the axial and bending deformations of the beam
and is calculated as

�2 = �� − 1�
4

R2� �17�

R can be thought of as the radius of gyration for the cross section
of the beam. Therefore, as R increases, the apparent bending stiff-
ness increases. The contour length of the deformed beam can be
calculated as

LC =�1 +
�A

2a2b2

�F
2 E�� a2b2

�F
2

�A
2 + a2b2�L �18�

The undeformed contour length and undeformed projected fiber
length are then related to the deformed contour length and de-
formed projected fiber length by

LC

L0
C =

�1 +
�A

2a2b2

�F
2 E�� a2b2

�F
2

�A
2 + a2b2�

�1 + a2b2E	� a2b2

1 + a2b2

L

L0
�19�

The relationship governing the stretch in the fiber compared with

Fig. 2 Schematic of crimped fiber model, the solid line is the
undeformed fiber configuration and the dotted line is the de-
formed fiber configuration
the apparent stretch is

MAY 2011, Vol. 133 / 051002-3

e: http://www.asme.org/about-asme/terms-of-use



E
o
s
r

A
d
s
m
t

H
fi
c
a
c
t
a
a
F
s
a
R

�̄
�

U
b

i
s
l
fi
d
l
n

s
i
w

e

F

s

c
a
e

h
c
c
m
t

t

0

Downloaded From:
�c =
�1 +

�A
2

�F
2a2b2

1 + a2b2

E�� a2b2

�F
2

�A
2 + a2b2�

E	� a2b2

1 + a2b2

�F �20�

quation �20� can be simplified and linearized with the same order
f error as before then rewritten in terms of the apparent fiber
tretch �F and the material fiber stretch �c by substituting the
elationships, giving

�F = �c

1 + a2b2/4
1 + a2b2/4�4�c��c − 1��Rb�2 + 1�−1 �21�

more detailed derivation of this relationship is shown in Appen-
ix A. This relationship can be inverted to solve for the material
tretch �c, given �F. Assuming the fiber behaves as a Hookean
aterial, given the observed stretch, the force is calculated from

he stretch as

FF = EA��c − 1� �22�

ere, the fiber is treated as a linearly elastic beam because the
ber strains are low. Although the overall material deformation
an be large, the fiber material does not undergo high strain due to
rigid body rotation of the fiber and bending deformation, which

an accommodate a large deformation. Large material deforma-
ions of the fibers are not usually experienced under normal oper-
ting conditions and as such, a small fiber strain measure can be
dopted. The small fiber material strain can be seen in Sec. 4.2.
rom Fig. 2, the six parameters, A, E, a, R, l0, and I can be further
implified to four parameters: the modulus E, the cross-sectional
rea A, the ratio between bending rigidity and extensional stiffness
2 / l0

2=4I /Al0
2, and another specifying the geometry of the fiber

0=a tan�2ab /��. Using these new parameters and rewriting Eq.
21� give

�F = �c

1 + �2

8 tan2 �̄0
2

1 + �2

8 tan2 �̄0
2� 16

�2 �c��c − 1�� l0

R�2
+ 1�−1 �23�

sing this equation for the calculation of force from stretch, the
ehavioral dependence on the stress can be observed. The change

n fiber behavior due to varying R / l0 while holding �̄0 constant is
hown in Fig. 3�a�. At low R / l0 values �R / l0�0.1�, there is very
ittle stiffness in the low-stretch region. With increasing R / l0, the
ber bears load earlier, but at high stretches retains the same fully-
eveloped apparent stiffness. This parameter thus determines the
ow-stretch stiffness and the shape of the transition from low stiff-
ess to fully developed stiffness.

In Fig. 3�b�, �̄0 is varied while holding R / l0 constant for a
ingle, isolated fiber under uniaxial tension. The largest effect of
ncreasing this parameter is to increase the observed stretch at
hich the fiber begins to bear load. In addition to increasing the

ngagement stretch, �̄0 changes the behavior of the engagement.

or example, when �̄0 is small, a sharp transition of slope can be

een. The transition broadens with increasing �̄0. In addition, be-

ause �̄0 also increases the total length of the fiber, it has the
dded effect of decreasing the fully developed apparent modulus
ven though the material modulus has not changed.

This fiber model captures the transition from low stiffness to
igh stiffness using two observable parameters. The parameters
an be obtained from histology and applied to the fiber model or
an be fit to the data taken from tissues using a least-squares
ethod. By using histological measurements of the fiber shape,

he tortuosity can be measured and applied to the sinusoid in order
¯
o obtain �0. This method is to be developed in the future.

51002-4 / Vol. 133, MAY 2011
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3.3 Orthotropic Crimped Fiber Model. Because artery tis-
sue can be thought of as locally orthotropic, it is appropriate to
utilize an orthotropic constitutive formulation. To this end, a
three-dimensional structure tensor with two orthogonal directions
and an isotropic component is used to characterize the material.
As with the distributed collagen fiber orientation method of mod-
eling used previously �15�, a three-dimensional structure tensor is
utilized to characterize the orientational distribution of the col-
lagen fiber bundles. Unlike the method employed by Gasser et al.
�15�, the structure tensor used here has two orthogonal groups of
fibers forming the major axes of an ellipsoid with a tunable shape
in all three major directions. The shape of the ellipsoid represents
the angular distribution of collagen fibers in the artery wall. Col-
lagen fibers in the artery wall have a distribution of orientations.
The mean direction of orientation follows the circumferential di-
rection. Similar to the symmetric fiber families about the circum-
ferential direction used in Ref. �28�, which assumes that the fibers
exist in the circumferential-longitudinal plane, a second direction
is needed to define the plane in which the fibers and the local
directions governing the orthotropy of the tissue lie. We define the
local coordinate system through the vectors describing the circum-
ferential and longitudinal directions. In addition to the vector de-
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Fig. 3 The behavior of a single fiber under uniaxial extension
is plotted. The nominal fiber stress P is normalized by the
Young’s modulus to give the reduced fiber stress. „a… As the
bending stiffness via R / l0 is increased, the fiber behavior goes
from a sharp engagement to a broad engagement. The shape of
the fiber is held constant at �̄0=54 deg. „b… As the shape via �̄0
is increased, the fiber behavior goes from a sharp transition
with some fully developed stiffness to a broad transition with
lower fully developed stiffness. The stretch at which the transi-
tion occurs also increases with increasing �̄0. The radius of
gyration ratio is kept constant where R / l0=0.05.
scribing the circumferential direction, the second vector is neces-
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ary to form the plane. In this paper, the second vector is chosen
o be the longitudinal direction. Thus, the orthogonal vectors a0
nd g0 are aligned with the circumferential and longitudinal direc-
ions, respectively, defining the plane in which the fibers generally
ie. The structure tensor then takes the form

H0 =
� + � − 1

3
I + �1 − ��a0 � a0 + �1 − ��g0 � g0 �24�

here � and � are the structure parameters that affect the shape of
he tensor and must be between zero and 1 and must also satisfy
+�	1, which ensures that the dimensions of the structure ten-

or are positive. A negative eigenvalue in the structure tensor
ould cause the model to lose convexity and violate the global
inimum of strain energy at no deformation. This effect is de-

ailed in Appendix B. This structure tensor can be visualized as an
llipsoid, with a trace of 1, as in Fig. 4. When the structure pa-
ameters are both in unity, the coefficients for the second and third
erms in Eq. �24� vanish, the structure tensor represents a sphere,
nd the behavior of the material is isotropic. The structure tensor’s
hape reflects the fiber distribution and gives rise to the model’s
nisotropy. The two parameters in the structure tensor are cur-
ently fit to the test data, but we are currently working toward
istological image and structure parameter correlation. Typical pa-
ameter values for � and � are around 0.8–0.9, which gives an
blate ellipsoid with a thickness around 0.2. The structure tensor
n the current configuration is denoted as

H = FH0FT �25�

s with the model introduced by Gasser et al. �15� and Spencer’s
ork �35�, the stretch experienced by a fiber is related to the

tructure tensor by �F
2 =H0 :C. Using Eqs. �6� and �10a�, this can

e written in terms of the invariants,

�F = �H0:C =�� + � − 1

3
I1 + �1 − ��I4 + �1 − ��I6 �26�

he strain energy density function is given by

�CF = K�F��F� �27�

here K is the density of the fibers in the composite. In general,
or a material dependent on the first, fourth, and sixth invariants,
he second PK stress is given by

SCF = 2
��CF

�I1
I − pC−1 + 2

��CF

�I4
a0 � a0 + 2

��CF

�I6
g0 � g0 �28�

he relevant terms to compute are the derivatives of the strain
nergy function with respect to the invariants,

��CF

=
1

KFF��F��F
−1	� + � − 1


ig. 4 The visualized ellipsoidal structure tensor: This is gen-
rated by observing how the structure tensor transforms a unit
ector. A longer dimension indicates a higher concentration of
bers in that direction. Note here that a0 and g0 are not aligned
ith the global coordinate system, but in the model, they are
xed to the circumferential and longitudinal directions,
espectively.
�I1 2 3

ournal of Biomechanical Engineering
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��CF

�I4
=

1

2
KFF��F��F

−1�1 − ��

��CF

�I6
=

1

2
KFF��F��F

−1�1 − �� �29�

Using Eqs. �28� and �29�, the second PK stress becomes

SCF = K
FF��F�

�F
	� + � − 1

3

I + �1 − ��a0 � a0 + �1 − ��g0 � g0�

− pC−1 �30�

In the isotropic case, k=y=1, the strain energy function should
reduce to an isotropic model and the second PK stress is

SCF =
K

3

FF��F�
�F

I − pC−1 �31�

The second PK stress and the Cauchy stress from Eq. �30� can be
rewritten using Eq. �24�, respectively, as

SCF = K
FF��F�

�F
H0 − pC−1 �32a�

�CF = K
FF��F�

�F
H − pI �32b�

3.4 The Orthotropy of Arterial Elastin. From the elastin
test data taken from purified pulmonary artery samples �29�, as
well as thoracic aorta sections �36�, it was seen that the behavior
of elastin differed in different directions. Therefore, an anisotropic
material model is used for elastin. For the model on elastin and
nonprotein matrix, we assume that it consists of two orthogonal
families of neo-Hookean fibers oriented with the axial and cir-
cumferential directions that are embedded in a neo-Hookean ma-
trix. As in the model for a neo-Hookean fiber by deBotton et al.
�30�, we use the strain energy function for the fiber reinforcement
�el

a of

�el
a =


a − 


2
�I4 + 2I4

−1/2 − 3� �33�

where I4 is the fourth invariant associated with the circumferential
direction, which also coincides with the a fiber direction. The
effective modulus of the fiber is characterized by 
a. We take the
derivative with respect to I4,

��el
a

�I4
=


a − 


2
�1 − I4

−3/2� �34�

which is used in the stress formulation. Unlike the model pre-
sented by Rezakhaniha and Stergiopulos, which used a trans-
versely isotropic material �23�, we choose an orthotropic represen-
tation. Together with the isotropic neo-Hookean matrix of the
shear modulus 
 and an additional fiber family coincident with
the axial direction with shear modulus 
g, the total strain energy
for the elastin component is given as

�el =



2
�I1 − 3� +


a − 


2
�I4 + 2I4

−1/2 − 3� +

g − 


2
�I6 + 2I6

−1/2 − 3�

�35�

The second PK stress and the Cauchy stress are

Sel = 
I + �
a − 
��1 − I4
−3/2�a0 � a0 + �
g − 
��1 − I6

−3/2�g0 � g0

− pC−1 �36a�

�el = 
b + �
a − 
��I4 − I4
−1/2�a � a + �
g − 
��I6 − I6

−1/2�g � g

− pI �36b�
This model can easily be reduced to the isotropic neo-Hookean
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ase by setting 
a and 
g to 
. The ratio between the circumfer-
ntial and the longitudinal moduli can be large, as it has been
ound that thoracic aorta has circumferential modulus twice that
f the longitudinal direction �36�. Extreme anisotropy, a ratio of
0 or more, is not expected, and typical anisotropy ratios range
rom 1 to 5.

3.5 Complete Model Incorporating Volume Fractions. The
odel strain energy is the total of the strain energies representing

he collagen fiber bundles and the elastin network weighted by its
olume fraction,

� = fel�el + �CF �37a�
ince the collagen fiber bundle model already contains a density
K�, Eq. �37a� does not have a volume fraction for collagen fiber
undle energy. In addition, it is possible to lump the volume frac-
ion fel with elastin shear moduli. This linear superposition of
train energy allows us to calculate the stresses as

S = Sel + SCF �37b�
hich can be rewritten as

S = �
I + �
a − 
��1 − I4
−3/2�a0 � a0 + �
g − 
��1 − I6

−3/2�g0

� g0� + K
FF��F�

�F
H0 − pC−1 �38�

ecause A and K together determine the total area of the collagen
bers per unit material area, it is advantageous to lump the two

ogether �KA�. In total, there are nine parameters to consider here:
hree moduli concerning the elastin protein network, isotropic
hear modulus 
, circumferential shear modulus 
a, longitudinal
hear modulus 
g; three parameters for the collagen fiber bundle,

ntrinsic collagen fiber Young’s modulus E, fiber shape �̄0, and
ormalized radius of gyration, R / l0; one pertaining to collagen
bers per unit material area, KA; and two for the orthotropic struc-

ure tensor, circumferential � and longitudinal �. For the follow-
ng sections, the intrinsic material modulus of the collagen fiber E
as chosen to be in the range of previous work �14,21,37,38�,
ith a value of 10 GPa. The model from here on will be called the

otal crimped fiber �TCF� model.

Results
In the following, we evaluate the TCF model behavior by in-

estigating the stress-strain response of artery tissue under
niaxial loading conditions. A more thorough evaluation of the
odel is to investigate its performance under different loading

onditions such as uniaxial and biaxial. This is currently at-
empted by the authors and will be reported in the future. First, the
tress-stretch response of the model under uniaxial loading is de-
eloped. Second, we conduct parametric studies to observe the
ffects of structural parameters on the model behavior. Third, we
ompare the model behavior with experimental results. Finally,
e use the model to explore parameters used previously in judg-

ng artery behavior.

4.1 Model Responses Under Uniaxial Deformation. Mate-
ial point simulations were performed using the model with vary-
ng parameters. Applying the load in the 1-direction S11, one can
olve for the uniaxial stress by applying the appropriate boundary
onditions of S22=S33=0 and the incompressibility constraint.
aking the full orthotropic model, with the stress applied in the
-direction,

S11 = 
 + �
a − 
��1 − �−3� + K
FF��F�

�F
	− 2� + � + 2

3

 − p

1

�2

S22 = 
 + �
g − 
��1 − �2
−3� + K

FF��F�
�F

	� − 2� − 2

3

 − p

1

�2 = 0

2
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S33 = 
 + K
FF��F�

�F
	� + � − 1

3

 − p���2�2 = 0 �39a�

where

�F =�� + � − 1

3
	�2 + �2

2 +
1

�2�2
2
 + �1 − ���2 + �1 − ���2

2

�39b�

Using S33=0, we can solve for the Lagrange multiplier associated
with the incompressibility constraint p as

p =


 + K
FF��F�

�F
	� + � − 1

3



���2�2 �40�

Combining this with S22, we obtain the expression


 + �
g − 
��1 − �2
−3� + K

FF��F�
�F

	� − 2� − 2

3



−


 + K
FF��F�

�F
	� + � − 1

3



�2�2
4 = 0 �41�

This can be solved numerically for �2 given �. Once �2 is ob-
tained, �F and the uniaxial stress can be calculated. For uniaxial
tests in the 2-direction where S22 is controlled, the process is
similar, but with S11=0. The uniaxial deformation case was used
to fit the experimental data in the following sections.

4.2 Comparison With Experiments. The model was fit to
the uniaxial data taken from the excised calf tissues to evaluate
the model both qualitatively and quantitatively. Some data fits are
shown in Fig. 5. The markers are experimental data points, while
the lines are the model fits. As seen here, the fit quality is very
good in different situations of material behaviors. In Fig. 5�a�, it is
seen that the material behaves nearly transversely isotropically in
the low-stretch regions and grow apart with increased stretch. This
is a function of the anisotropy of the collagen fiber portion of the
model. In Fig. 5�b�, the lower-stretch portion of the behavior have
different stiffnesses, but this is consistent with the engagement of
the collagen fibers. To fit these data, the anisotropic emphasis is
placed on the collagen portion. In Fig. 5�c�, we see a nearly trans-
versely isotropic response, and this is reflected in the parameters
in Table 1. Figure 5�d� shows an interesting behavior in which the
low-stretch behavior is highly anisotropic while the collagen en-
gagement stretch does not change. The transition of collagen en-
gagement is captured well by the model. The high-stretch portions
of the curves are also fit well. The material parameters used to fit
the data are presented in Table 1. While the parameters corre-
sponding to the neo-Hookean portion vary considerably, it is im-
portant to note that the low-stretch behavior does vary from tissue
to tissue. Though the isotropic neo-Hookean portion of the model
is highly variable, it is consistently low. This variability is, in part,
due to the use of two uniaxial tests. Better results might be ob-
tained when using data from biaxial tests. The R2 values presented
are calculated as

R2
TCF = 1 −

� �y − ydata�2

� �ydata − ȳ�2
�42�
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here y is the stress for the circumferential and longitudinal di-
ection uniaxial tests. It is seen from the high R2 in Table 1 that
he model fits the data well. It captures the anisotropy of both the
ow-stretch portion and the crimped fiber portion.

Figure 5�e� shows the fiber material stretch as a function of the
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The fiber material stretch is calculated from Eq. �20�. It is seen
that as the material stretch reaches �1.6, the fiber material stretch
is only �1.009. As discussed before, this is because the fiber rigid
body rotation and bending can accommodate a large amount of
stretch before the fiber itself is stretched largely.
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Discussion

5.1 Parametric Study. The model has nine independent pa-
ameters. The orthotropic neo-Hookean portion of the model is
uite straightforward in its behavior. The parameter 
 defines the
ut-of-plane stiffness in the low-stretch region. This parameter
omes into play when the material is deformed biaxially. It deter-
ines the coupling between the stresses in the a or circumferen-

ial direction and g or longitudinal direction through the incom-
ressibility constraint and the prescribed boundary conditions. A
arger 
 will cause a larger stress to be transmitted to the orthogo-
al direction for a given deformation state. The parameters 
a and
g drive the low-stretch stiffness under uniaxial deformation in

he circumferential and axial directions, respectively. Changes in
hese parameters indicate a change in the elastin network. Any
ncrease here indicates an increase in low-stretch stiffness, which
s an observed change in pulmonary hypertension �3�. The stron-
est indicator of large artery stiffness is 
a, as it determines the
ircumferential stiffness and therefore affects the volumetric
apacitance.

The crimped fiber portion of the model has parameters that
ertain to the fibers themselves and parameters that pertain to the
rientation of the fibers. The effects of the collagen portion of this
odel can be elucidated by how they relate to the material micro-

tructure. The collagen fiber number density K, along with the
oung’s modulus of the fibers E and single fiber area A, defines

he stiffness of the crimped fiber portion of the model. As we have
hown earlier, it is conceptually simple to fix the modulus and
ump the number density and fiber area into an effective area
raction KA. The structure tensor characterizes the degree of an-

sotropy. The shape of the sinusoidal beam �̄0 drives the engage-
ent point of the fibers. It relates to the tortuosity in the collagen
ber bundle and thus drives the engagement point of the fibers
elating to the crimp measured by Hurschler et al. �39�. An in-
rease in this parameter will cause an increase in the engagement
oint and a subsequent decrease in the fully developed stiffness
ue to the additional total length of the fiber. This would indicate
hat elastin would continue to dominate at a higher stretch than

ith a lower value of �̄0. The bending stiffness parameter R / l0
etermines the breadth of the transition between elastin-
ominated low stretches and the collagen-dominated high-stretch
egimes. An increase here would indicate either: a fiber with larger
ending stiffness, a change in the fiber properties, or a broader
istribution of the engagement stretch of the collagen fibers.

In Sec. 5.2, the effects of the crimped fiber orthotropic model
arameters are studied through a parametric study. The parameters
an be tuned to achieve a certain behavior. Besides having high
exibility in modeling anisotropy and engagement, the model pro-
uces a basic shape of the stress-stretch curves that is consistent
ith the J-shape common to artery behavior, which simplifies the
se and understanding of the model.

Figures 6�a�–6�c� show the stress-stretch curves for varying one
arameter and holding the others constant. In these figures, �1 and
2 correspond to the axial and circumferential stretch, respec-

ively, while �3 is the radial stretch. In calculating the material

Table 1 Fit parameters and normalized error for selected tiss

Figure



�kPa�

a

�kPa�

g

�kPa�
KA

�nm2 /nm3� ��

5�a� 2.89 3.16 7.87 2.957
5�b� 5.76�10−4 21.14 20.14 8.562
5�c� 1.46�10−4 10.57 9.28 7.178
5�d� 2.01 18.08 2.10 12.261

8�a� and 8�b� 6.10 8.78 7.21 39.61
8�c� and 8�d� 1.01 4.80 6.90 56.34
esponse, the uniaxial stretch, �1 or �2, is the independent param-
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eter and �1, �2, and �3 or �2, �1, and �3 are the dependent vari-
ables as in Eq. �39�. In Figs. 6�a�–6�c�, the uniaxial material re-
sponse is shown for the orthotropic crimped fiber model only,
showing the effect of changing the model parameters pertaining to
the fibers and their orientations. This was performed by setting the
three shear moduli of the orthotropic neo-Hookean components to
zero. For each set of parameters, the resultant uniaxial behaviors
along the two fiber directions are shown.

In Fig. 6�a�, the change in material behavior due to changing �
while holding all other parameters constant causes an observed
change in the anisotropy of the collagen component. A higher
value for � corresponds to less fiber alignment in the longitudinal
direction, and thus the stiffness and fiber engagement stretch in
the longitudinal direction is directly affected by this change. The
same is true for � and the circumferential direction. If both pa-
rameters decrease in the same proportion, the structure tensor flat-
tens and causes a decrease in the coupling between the transverse
direction and the in-plane directions. A highly anisotropic material
can be specified with the given parameters, but the fully devel-
oped stiffness will differ with direction.

The change in material behavior due to a change in �̄0 as in Fig.
6�b�, is observed in both the ultimate stiffness and engagement

stretch. Increasing �̄0 directly causes an increase in the engage-
ment stretch. In addition to increasing the engagement stretch, the
ultimate stiffness is decreased. This is, as stated earlier, due to the
increased contour length of the beam with constant end-to-end
distance. It may appear that the degree of anisotropy is increased

with increasing �̄0, but the perceived increase in the degree of
anisotropy is due only to the increased stretch at which engage-
ment occurs.

The effect of R / l0 on behavior is explored in Fig. 6�c�. At low
values for R / l0, there is very little stiffness at low stretches, which
rapidly increases and becomes linear quickly above the engage-
ment stretch. At higher values, it is seen that there is some low-
stretch stiffness and the transition to the fully developed stiffness
is more gradual.

While the parameters are not orthogonal, that is, a change in
one parameter may change more than one observable characteris-
tic, the parameters are physically relevant. The change of the

shape of the fiber through �̄0 may change the fully developed
stiffness, but it does so in a physically based way. An orthogonal
set of parameters could be found in order not to change aspects of
the behavior not directly associated with the parameter in order to
more easily understand the behavior, but those parameters would
not be physically based and so would not directly correlate to any
microstructural characteristics. Some parameters of this model are
not unique as some parameters such as the fiber density K and
collagen modulus E would affect the model in the same way.
However, it is conceivable that two or more microstructural
changes can affect the same changes in the mechanical behavior
under certain mechanical loading conditions �see Ref. �14� for a
brief discussion on uniqueness of collagen fiber stiffness and en-
gagement�. One way to overcome this deficiency is to connect
model parameters with certain features of the stress-strain curves

sections. These correspond to Figs. 5„a…–5„d… and 8„a…–8„d….

−3�
�̄0

�deg�
R / l0

�nm/nm� ��10−3� � � R2
TCF

48.5 3.480 0.818 0.900 0.9990
43.1 2.890 0.744 0.811 0.9983
44.8 3.214 0.865 0.869 0.9977
41.0 2.841 0.969 0.983 0.9963
31.1 5.134 0.323 0.889 N/A
22.8 2.900 0.857 0.993 N/A
ue

10
and then to use these connections to guide the material parameter
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identification. However, this approach could become cumbersome
if the number of experiments from different tissues increases. The
other approach is to use data from experiments under different
loading conditions such as biaxial experiments with different
loading ratios between longitudinal and circumferential directions.

5.2 Collagen Engagement Point and Material Parameters.
Using a method described by Lammers et al. �3�, the collagen

engagement point was correlated with the parameters �̄0 and R / l0.
Briefly, the curvature of the stress-stretch data is calculated, and
the point of maximum curvature is taken to be the collagen en-
gagement point. Note that this is not the collagen transition point
used by Lammers et al., but the engagement point designates the
stretch at which the majority of collagen is engaged. The full
model was used to generate the curvature data, but all parameters
were kept constant save for the parameter in question. Figure 7�a�
shows the engagement stretch as a function of the parameter R / l0.
It seen here that the bending stiffness does affect the engagement
stretch but quickly loses sensitivity as R / l0 grows larger than 0.5.
The region of greatest sensitivity is around R / l0=0.25, which is
much greater than the value for the data fits. Figure 7�b� shows the

engagement stretch as a function of �̄0. Though not shown on this

plot, the engagement stretch would reach unity when �̄0 reaches

zero and would asymptote to infinity as �̄0 approaches 90 deg. The

ranges of the parameters for R / l0 and �̄0 are around 0.001–0.01
deg and 40–50 deg, respectively. In this range, the engagement
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nd R / l0=0.1. „b… Results for the crimped fiber model only,
howing the effect of changing crimped fiber parameter �̄0. As

¯
0 increases, it pushes the engagement strain of the collagen
urther out. It also decreases the stiffness as the contour length
s increased. The parameters held constant are KA=8

10−4 nm−1, E=10 GPa, R / l0=0.1, �=0.90, and �=0.95. „c… The
ffect of changing crimped fiber parameter R / l0: As the radius
f gyration is changed, it causes the transition to broaden and
ecome more gradual. The parameters held constant are KA

−4 −1 ¯
stretch is not sensitive to R / l0 but is most sensitive to �0. There-
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ore, it can be said that shape of the fiber affects the engagement
tretch of the model more than the bending stiffness.

5.3 Model Application to Physiological Loading
onditions. The goal of this research is to present a structure-
riven constitutive model for mechanical behaviors of arterial tis-
ue. The model fits in the above sessions were based on uniaxial
xperimental data, where two separate samples were cut from the
ame animal in each data set. In order to investigate the model
erformance under physiological conditions, we use our recent
reliminary data obtained from planar biaxial tests. Here, a planar
iaxial tester was used �40�. The sample was cut from the main
ulmonary artery �MPA� with a size of �25 mm �w�
25 mm �h��4 mm �t� and was tested in the similar solution

nvironment as for uniaxial experiments. Three experiments were
onducted on the same tissue with the following circumferential
ersus longitudinal �C:L ratio� stress ratios: 100:0 �circumferential
niaxial�, 0:100 �longitudinal uniaxial�, and 100:25. The circum-
erential and longitudinal experimental data were used to fit the
aterial parameters. Figure 8�a� shows very good fits �material

arameters are shown in Table 1�. These material parameters were
hen used to predict the 100:25 biaxial stress experiment, which is
lose to physiological loading conditions. It can be seen that the
odel using material parameters from circumferential and longi-

udinal uniaxial test fits predicts reasonably well the 100:25 case.
igure 8�b� shows that the model captures the low-stretch region
ery well but starts to deviate from the experimental curves gradu-
lly as the stretch increases, indicating that a future improvement
f the model is necessary. However, we also note that the circum-
erential uniaxial experiment and 100:25 �C:L� biaxial experi-
ents are closer to the physiological conditions; we can fit the
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aterial parameters using the curves from these two experiments.

51002-10 / Vol. 133, MAY 2011

 https://biomechanical.asmedigitalcollection.asme.org on 07/01/2019 Terms of Us
Figures 8�c� and 8�d� show the model fit �material parameters are
shown in Table 1�. It is clear that as we focus only on the physi-
ological relevant experimental data, the model can fit the curves
very well. Therefore, from the preliminary biaxial experimental
data, the model is able to capture the biaxial deformation behavior
of the PA tissue under physiological conditions. This certainly
needs to be further verified with more experimental data. On the
other hand, we also realize that from a constitutive modeling point
of view, one would expect that the model can capture the material
behavior under a wider spectrum of loading conditions such as the
biaxial loading condition with C:L ratios such as 100:0, 100:25,
100:50, 100:100, 50:100, 25:100, and 0:100. We will also refine
the model in order to better reflect the material behavior and struc-
ture. This is currently investigated by the authors and will be
reported in the future.

6 Conclusion
An orthotropic constitutive law called the total crimped fiber

model was presented for artery tissues. The model incorporates
orthotropic behavior for both elastin and collagen components,
allowing the model to produce different orthotropic behaviors for
the two major components. The elastin portion is a neo-Hookean
fiber reinforced neo-Hookean solid. This reproduces the neo-
Hookean behavior under uniaxial deformations, which agrees with
the behavior as stated in literature. The collagen portion uses a
microstructural basis for the nonlinear J-shape of the stress-stretch
curve. A planar sinusoidal linear elastic beam is employed to
model the tortuous collagen fiber bundles. The model fits the data
well and has less complexity than other models due to the flex-
ibility afforded by the sinusoidal crimped fiber model and the
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avior of the material. The model can also elucidate certain as-
ects of the vascular behavior such as increased stiffness of either
he collagen or elastin components with physiological relevant
arameters. The progression of this work is to quantifiably corre-
ate the model material properties with histological images and

easurements from the material itself. Based on limited biaxial
lanar experimental data, the model shows that when using the
aterial parameters from circumferential and longitudinal experi-
ental data to predict the loading conditions close to physiologi-

al conditions, the model captures the overall behavior well and
redicts well the initial loading portion but presents a stiffer re-
ponse at higher stretch. However, when the experimental data are
rom the circumferential uniaxial loading and 100:25 C:L ratio
oading conditions, the model is able to fit both experimental data
ery well. Further work will be performed in order to fully deter-
ine the multiaxial performance of the model and, if necessary,
ne-tune the model.
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ppendix A: Derivation of Contour Length of the Un-
eformed and Deformed Sinusoidal Beam
To calculate the contour length of the beam, we find the incre-
ental arc length ds for a given differential length dx and subse-

uent differential change dy with Eq. �13� as the function

ds2

dx2 = 	dy

dx

2

+ 1

ds

dx
= �a2b2 cos2 bx + 1

ds = �a2b2 cos2 bx + 1dx �A1�
ntegrating along the length, we obtain

s =
�1 + a2b2

b
Ebx,� a2b2

1 + a2b2� �A2�

ntegrating only to the first quarter wavelength is necessary; as the
uarter wavelengths shapes are similar, we obtain

s = �1 + a2b2E	� a2b2

1 + a2b2
x �A3�

or the deformed beam whose shape is described by Eq. �15�, the
rc length s is calculated as

s =
�F

b
�1 +

�A
2a2b2

�F
2 E bx

�F
,� �A

2a2b2

�F
2 + �A

2a2b2� �A4�

nd for the first quarter wavelength as

s =�1 +
�A

2a2b2

�F
2 E� �A

2a2b2

�F
2 + �A

2a2b2�x �A5�

ppendix B
In order to assess the consequences of a negative value in the

tructure tensor, we assume a transversely isotropic material ��
��. With �=� and an applied stretch � in the transverse direc-
ion, the deformation tensor and structure tensor are
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C = �
1

�

1

�

�2
�, H = �

2 − �

3

2 − �

3

2� − 1

3

� �B1�

As in Eq. �26�, the fiber stretch is calculated as

�F = �H0:C �B2�
The term within the radical is calculated as

H:C =
2 − �

3

2

�
+

2� − 1

3
�2 �B3�

With increasing applied stretch, �2 increases faster than 1 /� de-
creases and as such, with �2�−1� /3�0, the term within the radi-
cal becomes negative, which leads to an imaginary number for the
fiber stretch. The same effect occurs if any other dimension of the
ellipsoid is negative as well. An ellipsoid dimension of 0 is per-
mitted, but negative dimensions will give imaginary results.
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