64 research outputs found

    Curved Tails in Polymerization-Based Bacterial Motility

    Full text link
    The curved actin ``comet-tail'' of the bacterium Listeria monocytogenes is a visually striking signature of actin polymerization-based motility. Similar actin tails are associated with Shigella flexneri, spotted-fever Rickettsiae, the Vaccinia virus, and vesicles and microspheres in related in vitro systems. We show that the torque required to produce the curvature in the tail can arise from randomly placed actin filaments pushing the bacterium or particle. We find that the curvature magnitude determines the number of actively pushing filaments, independent of viscosity and of the molecular details of force generation. The variation of the curvature with time can be used to infer the dynamics of actin filaments at the bacterial surface.Comment: 8 pages, 2 figures, Latex2

    Denial of long-term issues with agriculture on tropical peatlands will have devastating consequences

    Get PDF
    Non peer reviewe

    Search for Gravitational Waves from Intermediate Mass Binary Black Holes

    Get PDF
    We present the results of a weakly modeled burst search for gravitational waves from mergers of non-spinning intermediate mass black holes (IMBH) in the total mass range 100--450 solar masses and with the component mass ratios between 1:1 and 4:1. The search was conducted on data collected by the LIGO and Virgo detectors between November of 2005 and October of 2007. No plausible signals were observed by the search which constrains the astrophysical rates of the IMBH mergers as a function of the component masses. In the most efficiently detected bin centered on 88+88 solar masses, for non-spinning sources, the rate density upper limit is 0.13 per Mpc^3 per Myr at the 90% confidence level.Comment: 13 pages, 4 figures: data for plots and archived public version at https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=62326, see also the public announcement at http://www.ligo.org/science/Publication-S5IMBH

    Semi-inclusive pi(0) target and beam-target asymmetries from 6 GeV electron scattering with CLAS

    Get PDF
    We present precision measurements of the target and beam-target spin asymmetries from neutral pion electroproduction in deep-inelastic scattering (DIS) using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. We scattered 6-GeV, longitudinally polarized electrons off longitudinally polarized protons in a cryogenic 14^{14}NH3_3 target, and extracted double and single target spin asymmetries for epeπ0Xep\rightarrow e^\prime\pi^0X in multidimensional bins in four-momentum transfer (1.0<Q2<3.21.0<Q^2<3.2 GeV2^2), Bjorken-xx (0.12<x<0.480.12<x<0.48), hadron energy fraction (0.4<z<0.70.4<z<0.7), transverse pion momentum (0<PT<1.00<P_T<1.0 GeV), and azimuthal angle ϕh\phi_h between the lepton scattering and hadron production planes. We extracted asymmetries as a function of both xx and PTP_T, which provide access to transverse-momentum distributions of longitudinally polarized quarks. The double spin asymmetries depend weakly on PTP_T. The sin2ϕh\sin 2\phi_h moments are zero within uncertainties, which is consistent with the expected suppression of the Collins fragmentation function. The observed sinϕh\sin\phi_h moments suggest that quark gluon correlations are significant at large xx.Comment: 18 preprint pages, 3 figure

    Target and double spin asymmetries of deeply virtual pi(0) production with a longitudinally polarized proton target and CLAS

    Get PDF
    The target and double spin asymmetries of the exclusive pseudoscalar channel epepπ0\vec e\vec p\to ep\pi^0 were measured for the first time in the deep-inelastic regime using a longitudinally polarized 5.9 GeV electron beam and a longitudinally polarized proton target at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS). The data were collected over a large kinematic phase space and divided into 110 four-dimensional bins of Q2Q^2, xBx_B, t-t and ϕ\phi. Large values of asymmetry moments clearly indicate a substantial contribution to the polarized structure functions from transverse virtual photon amplitudes. The interpretation of experimental data in terms of generalized parton distributions (GPDs) provides the first insight on the chiral-odd GPDs H~T\tilde{H}_T and ETE_T, and complement previous measurements of unpolarized structure functions sensitive to the GPDs HTH_T and EˉT\bar E_T. These data provide necessary constraints for chiral-odd GPD parametrizations and will strongly influence existing theoretical handbag models

    First measurement of the helicity asymmetry E in eta photoproduction on the proton

    Get PDF
    Results are presented for the first measurement of the double-polarization helicity asymmetry E for the η\eta photoproduction reaction γpηp\gamma p \rightarrow \eta p. Data were obtained using the FROzen Spin Target (FROST) with the CLAS spectrometer in Hall B at Jefferson Lab, covering a range of center-of-mass energy W from threshold to 2.15 GeV and a large range in center-of-mass polar angle. As an initial application of these data, the results have been incorporated into the J\"ulich model to examine the case for the existence of a narrow NN^* resonance between 1.66 and 1.70 GeV. The addition of these data to the world database results in marked changes in the predictions for the E observable using that model. Further comparison with several theoretical approaches indicates these data will significantly enhance our understanding of nucleon resonances

    First measurement of the polarization observable E in the p→(γ→,π<sup>+</sup>)n reaction up to 2.25 GeV

    Get PDF
    First results from the longitudinally polarized frozen-spin target (FROST) program are reported. The double-polarization observable E, for the reaction γpπ+n\vec \gamma \vec p \to \pi^+n, has been measured using a circularly polarized tagged-photon beam, with energies from 0.35 to 2.37 GeV. The final-state pions were detected with the CEBAF Large Acceptance Spectrometer in Hall B at the Thomas Jefferson National Accelerator Facility. These polarization data agree fairly well with previous partial-wave analyses at low photon energies. Over much of the covered energy range, however, significant deviations are observed, particularly in the high-energy region where high-L multipoles contribute. The data have been included in new multipole analyses resulting in updated nucleon resonance parameters. We report updated fits from the Bonn-Gatchina, J\"ulich, and SAID groups.Comment: 6 pages, 3 figure
    corecore