248 research outputs found

    UTILIZING LIPID BIOMARKERS TO UNDERSTAND THE MICROBIAL COMMUNITY STRUCTURE OF DEEP SUBSURFACE BLACK SHALE FORMATIONS

    Get PDF
    The deep subsurface environment has been known to host microbes as early as 1926 and has also been suggested to potentially account for as much as 50% of the Earth`s biomass. Researchers have shown that microbes alter their membrane lipid components in response to physiological stress, producing stress indicative lipid biomarkers. However, little effort has been made to understand the subsurface microbial community of the shale ecosystem which is increasingly being exploited and altered by addition of drilling and hydraulic fluids to meet our growing energy needs. Phospholipid fatty acids (PLFAs) are microbial lipid biomarkers and are found in all cellular membranes. Their presence in sediments has been used to provide evidence of living microbes while diglyceride fatty acids (DGFAs) are microbial lipid biomarkers which serve as indicators of non-viable microbes. PLFAs and DGFAs are some of the most important proxies used to determine the physiological state of microbes in natural environmental systems. Currently, techniques for the evaluation of subsurface microbial community have mostly been focused on shallow subsurface environments and aquifer settings. This stems from the lack of appropriate techniques that can monitor the deep subsurface ecosystem. Developing such techniques require pristine subsurface rock samples, appropriate instruments and an understanding of the geology and biogeochemistry of the subsurface. The goal of this dissertation is to develop understanding of microbial life in subsurface (\u3e7000 ft.) Marcellus Shale Formation in the Appalachian Basin. The study focuses on the extraction and analyses of PLFAs and DGFAs to investigate the viable and non-viable microbial communities in these deep geologic formations. Samples used for this research were acquired from cores owned by the Marcellus Shale Energy and Environment Laboratory (MSEEL), the Department of Geology and Geography at West Virginia University (WVU), and the West Virginia Geological and Economic Survey (WVGES). A good understanding of microbial community of deep surface black shales like the Marcellus Shale, affords enormous opportunities for improving biocides in the shale energy industry, understanding subsurface microbial colonization, and engineering efforts for enhanced gas recovery

    APPEAL TO ALL AUTHORS

    Get PDF
    Dear All,Wish you a happy new year. Hope 2013 will be more promising to all of us and expecting good research and review articles. Presently we are able to publish very few articles in each issue, due to unavailability of quality submissions.As you all know, AJPRHC is an open- access journal publishes both print and online versions quarterly. In the New Year we are aiming to index AJPRHC in more number of databases and libraries. AJPRHC is committed to its basic principle of not charging any money from both authors and readers. Submit your quality articles to [email protected] or through jprhc.in.Thank you for all the support.Dr. Akondi Butchi RajuEditor, AJPRH
    • …
    corecore