1,247 research outputs found

    A patient with metastatic melanoma presenting with gastrointestinal perforation after dacarbazine infusion: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>We report a rare case of gastrointestinal perforation following dacarbazine infusion for metastatic melanoma. The condition is attributed to a responding malignant melanoma in the gastrointestinal tract.</p> <p>Case presentation</p> <p>A 52-year-old Caucasian man presented with abdominal pain and distension, malaise, night sweats, dysphagia and early satiety. A computed tomography scan showed massive ascites, lymphadenopathy and liver lesions suspect for metastases. An upper gastrointestinal endoscopy was performed and revealed multiple dark lesions of 5 mm to 10 mm in his stomach and duodenum.</p> <p>When his skin was re-examined, an irregular pigmented lesion over the left clavicle measuring 15 mm × 8 mm with partial depigmentation was found. Histological examination of a duodenal lesion was consistent with a diagnosis of metastatic melanoma. The patient deteriorated and his level of lactate dehydrogenase rapidly increased. The patient was started on systemic treatment with dacarbazine 800 mg/m<sup>2 </sup>every three weeks and he was discharged one day after the first dose. On the sixth day he was readmitted with severe abdominal pain. A chest X-ray showed the presence of free intraperitoneal air that was consistent with gastrointestinal perforation. His lactate dehydrogenase level had fallen from 6969U/L to 1827U/L, supporting the conclusion that the response of gastrointestinal metastases to dacarbazine had resulted in the perforation of the patient's bowel wall. A laparotomy was discussed with the patient and his family but he decided to go home with symptomatic treatment. He died 11 days later.</p> <p>Conclusion</p> <p>Melanoma can originate in, as well as metastasize to, the gastrointestinal tract. Gastrointestinal perforations due to responding tumors are a well-known complication of systemic treatment of gastrointestinal lymphomas. However, as the response rate of metastatic melanoma to dacarbazine is only 10% to 20%, and responses are usually only partial, perforation due to treatment response in metastatic melanoma is rare.</p> <p>Medical oncologists should be aware of the risk of bowel perforation after starting cytotoxic chemotherapy on patients with gastrointestinal metastases.</p

    Temozolomide followed by combined immunotherapy with GM-CSF, low-dose IL2 and IFNα in patients with metastatic melanoma

    Get PDF
    The purpose of this study is to determine the toxicity and efficacy of temozolomide (TMZ) p.o. followed by subcutaneous (s.c.) low-dose interleukin-2 (IL2), granulocyte-monocyte colony stimulating factor (GM-CSF) and interferon-alpha 2b (IFN alpha) in patients with metastatic melanoma. A total of 74 evaluable patients received, in four separate cohorts, escalating doses of TMZ (150-250 mg m(-2)) for 5 days followed by s.c. IL2 (4 MIU m(-2)), GM-CSF (2.5 microg kg(-1)) and IFN alpha (5 MIU flat) for 12 days. A second identical treatment was scheduled on day 22 and cycles were repeated in stable or responding patients following evaluation. Data were analysed after a median follow-up of 20 months (12-30 months). The overall objective response rate was 31% (23 out of 74; confidence limits 20.8-42.9%) with 5% CR. Responses occurred in all disease sites including the central nervous system (CNS). Of the 36 patients with responding or stable disease, none developed CNS metastasis as the first or concurrent site of progressive disease. Median survival was 252 days (8.3 months), 1 year survival 41%. Thrombocytopenia was the primary toxicity of TMZ and was dose- and patient-dependent. Lymphocytopenia (grade 3-4 CTC) occurred in 48.5% (34 out of 70) fully monitored patients following TMZ and was present after immunotherapy in two patients. The main toxicity of combined immunotherapy was the flu-like syndrome (grade 3) and transient liver function disturbances (grade 2 in 20, grade 3 in 15 patients). TMZ p.o. followed by s.c. combined immunotherapy demonstrates efficacy in patients with stage IV melanoma and is associated with toxicity that is manageable on an outpatient basi

    Melanoma: A model for testing new agents in combination therapies

    Get PDF
    Treatment for both early and advanced melanoma has changed little since the introduction of interferon and IL-2 in the early 1990s. Recent data from trials testing targeted agents or immune modulators suggest the promise of new strategies to treat patients with advanced melanoma. These include a new generation of B-RAF inhibitors with greater selectivity for the mutant protein, c-Kit inhibitors, anti-angiogenesis agents, the immune modulators anti-CTLA4, anti-PD-1, and anti-CD40, and adoptive cellular therapies. The high success rate of mutant B-RAF and c-Kit inhibitors relies on the selection of patients with corresponding mutations. However, although response rates with small molecule inhibitors are high, most are not durable. Moreover, for a large subset of patients, reliable predictive biomarkers especially for immunologic modulators have not yet been identified. Progress may also depend on identifying additional molecular targets, which in turn depends upon a better understanding of the mechanisms leading to response or resistance. More challenging but equally important will be understanding how to optimize the treatment of individual patients using these active agents sequentially or in combination with each other, with other experimental treatment, or with traditional anticancer modalities such as chemotherapy, radiation, or surgery. Compared to the standard approach of developing new single agents for licensing in advanced disease, the identification and validation of patient specific and multi-modality treatments will require increased involvement by several stakeholders in designing trials aimed at identifying, even in early stages of drug development, the most effective way to use molecularly guided approaches to treat tumors as they evolve over time

    Development of an Acute and Highly Pathogenic Nonhuman Primate Model of Nipah Virus Infection

    Get PDF
    Nipah virus (NiV) is an enigmatic emerging pathogen that causes severe and often fatal neurologic and/or respiratory disease in both animals and humans. Amongst people, case fatality rates range between 40 and 75 percent and there are no vaccines or treatments approved for human use. Guinea pigs, hamsters, cats, ferrets, pigs and most recently squirrel monkeys (New World monkey) have been evaluated as animal models of human NiV infection, and with the exception of the ferret, no model recapitulates all aspects of NiV-mediated disease seen in humans. To identify a more viable nonhuman primate (NHP) model, we examined the pathogenesis of NiV in African green monkeys (AGM). Exposure of eight monkeys to NiV produced a severe systemic infection in all eight animals with seven of the animals succumbing to infection. Viral RNA was detected in the plasma of challenged animals and occurred in two of three subjects as a peak between days 7 and 21, providing the first clear demonstration of plasma-associated viremia in NiV experimentally infected animals and suggested a progressive infection that seeded multiple organs simultaneously from the initial site of virus replication. Unlike the cat, hamster and squirrel monkey models of NiV infection, severe respiratory pathology, neurological disease and generalized vasculitis all manifested in NiV-infected AGMs, providing an accurate reflection of what is observed in NiV-infected humans. Our findings demonstrate the first consistent and highly pathogenic NHP model of NiV infection, providing a new and critical platform in the evaluation and licensure of either passive and active immunization or therapeutic strategies for human use

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Measurement of the production of a W boson in association with a charm quark in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    The production of a W boson in association with a single charm quark is studied using 4.6 fb−1 of pp collision data at s√ = 7 TeV collected with the ATLAS detector at the Large Hadron Collider. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to a muon or by the presence of a charmed meson. The integrated and differential cross sections as a function of the pseudorapidity of the lepton from the W-boson decay are measured. Results are compared to the predictions of next-to-leading-order QCD calculations obtained from various parton distribution function parameterisations. The ratio of the strange-to-down sea-quark distributions is determined to be 0.96+0.26−0.30 at Q 2 = 1.9 GeV2, which supports the hypothesis of an SU(3)-symmetric composition of the light-quark sea. Additionally, the cross-section ratio σ(W + +c¯¯)/σ(W − + c) is compared to the predictions obtained using parton distribution function parameterisations with different assumptions about the s−s¯¯¯ quark asymmetry
    corecore