183 research outputs found

    Reconstruction of subgrid scale topographic variability and its effect upon the spatial structure of three dimensional river flow

    Get PDF
    A new approach to describing the associated topography at different scales in computational fluid dynamic applications to gravel bed rivers was developed. Surveyed topographic data were interpolated, using geostatistical methods, into different spatial discretizations, and grain-size data were used with fractal methods to reconstruct the microtopography at scales finer than the measurement (subgrid) scale. The combination of both scales of topography was then used to construct the spatial discretization of a three-dimensional finite volume Computational Fluid Dynamics (CFD) scheme where the topography was included using a mass flux scaling approach. The method was applied and tested on a 15 m stretch of Solfatara Creek, Wyoming, United States, using spatially distributed elevation and grain-size data. Model runs were undertaken for each topography using a steady state solution. This paper evaluates the impact of the model spatial discretization and additional reconstructed-variability upon the spatial structure of predicted three-dimensional flow. The paper shows how microtopography modifies the spatial structure of predicted flow at scales finer than measurement scale in terms of variability whereas the characteristic scale of predicted flow is determined by the CFD scale. Changes in microtopography modify the predicted mean velocity value by 3.6% for a mesh resolution of 5 cm whereas a change in the computational scale modifies model results by 60%. The paper also points out how the spatial variability of predicted velocities is determined by the topographic complexity at different scales of the input topographic model

    Sensory fusion in Physarum polycephalum and implementing multi-sensory functional computation

    Get PDF
    Surface electrical potential and observational growth recordings were made of a protoplasmic tube of the slime mould Physarum polycephalum in response to a multitude of stimuli with regards to sensory fusion or multisensory integration. Each stimulus was tested alone and in combination in order to evaluate for the first time the effect that multiple stimuli have on the frequency of streaming oscillation. White light caused a decrease in frequency whilst increasing the temperature and applying a food source in the form of oat flakes both increased the frequency. Simultaneously stimulating P. polycephalum with light and oat flake produced no net change in frequency, while combined light and heat stimuli showed an increase in frequency smaller than that observed for heat alone. When the two positive stimuli, oat flakes and heat, were combined, there was a net increase in frequency similar to the cumulative increases caused by the individual stimuli. Boolean logic gates were derived from the measured frequency change. © 2014

    Towards slime mould chemical sensor: Mapping chemical inputs onto electrical potential dynamics of Physarum Polycephalum

    Get PDF
    Plasmodium of slime mould Physarum polycephalum is a large single celled organism visible unaided by the eye. This slime mould is capable of optimising the shape of its protoplasmic networks in spatial configurations of attractants and repellents. Such adaptive behaviour can interpreted as computation. When exposed to attractants and repellents, Physarum changes patterns of its electrical activity. We experimentally derived a unique one-to-one mapping between a range of selected bioactive chemicals and patterns of oscillations of the slime mould's extracellular electrical potential. This direct and rapid change demonstrates detection of these chemicals in a similar manner to a biological contactless chemical sensor. We believe results could be used in future designs of slime mould based chemical sensors and computers. © 2013 Elsevier B.V

    Detector Description and Performance for the First Coincidence Observations between LIGO and GEO

    Get PDF
    For 17 days in August and September 2002, the LIGO and GEO interferometer gravitational wave detectors were operated in coincidence to produce their first data for scientific analysis. Although the detectors were still far from their design sensitivity levels, the data can be used to place better upper limits on the flux of gravitational waves incident on the earth than previous direct measurements. This paper describes the instruments and the data in some detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial change

    A First Search for coincident Gravitational Waves and High Energy Neutrinos using LIGO, Virgo and ANTARES data from 2007

    Get PDF
    We present the results of the first search for gravitational wave bursts associated with high energy neutrinos. Together, these messengers could reveal new, hidden sources that are not observed by conventional photon astronomy, particularly at high energy. Our search uses neutrinos detected by the underwater neutrino telescope ANTARES in its 5 line configuration during the period January - September 2007, which coincided with the fifth and first science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed for candidate gravitational-wave signals coincident in time and direction with the neutrino events. No significant coincident events were observed. We place limits on the density of joint high energy neutrino - gravitational wave emission events in the local universe, and compare them with densities of merger and core-collapse events.Comment: 19 pages, 8 figures, science summary page at http://www.ligo.org/science/Publication-S5LV_ANTARES/index.php. Public access area to figures, tables at https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p120000

    Translating Marine Animal Tracking Data into Conservation Policy and Management

    Get PDF
    There have been efforts around the globe to track individuals of many marine species and assess their movements and distribution with the putative goal of supporting their conservation and management. Determining whether, and how, tracking data have been successfully applied to address real-world conservation issues is however difficult. Here, we compile a broad range of case studies from diverse marine taxa to show how tracking data have helped inform conservation policy and management, including reductions in fisheries bycatch and vessel strikes, and the design and administration of marine protected areas and important habitats. Using these examples, we highlight pathways through which the past and future investment in collecting animal tracking data might be better used to achieve tangible conservation benefits

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society
    corecore