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We have found an unexpected class of astronomical objects which have not previously been
reported, in the Evolutionary Map of the Universe Pilot survey, using the Australian Square
Kilometre Array Pathfinder telescope. The objects appear in radio images as circular edge-
brightened discs about one arcmin diameter, and do not seem to correspond to any known
type of object. We speculate that they may represent a spherical shock wave from an extra-
galactic transient event, or the outflow, or a remnant, from a radio galaxy viewed end-on.

1 Introduction

Circular features are well-known in radio astronomical images, and usually represent a spherical
object such as a supernova remnant, a planetary nebula, a circumstellar shell, or a face-on disc
such as a protoplanetary disc or a star-forming galaxy. They may also arise from imaging artefacts
around bright sources caused by calibration errors or inadequate deconvolution. Here we report
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the discovery of a class of circular feature in radio images that do not seem to correspond to any of
these known types of object or artefact, but rather appear to be a new class of astronomical object.
For brevity, and lacking an explanation for their origins, we dub these objects “Odd Radio Circles”,
or ORCs.

These objects were discovered in the Pilot Survey1 of the Evolutionary Map of the Universe
(EMU)2, which is an all-sky continuum survey using the newly-completed Australian Square Kilo-
metre Array Pathfinder telescope (ASKAP)3–5. The EMU Pilot Survey (EMU-PS) used ASKAP
to survey a field of about 270 deg2 to an rms sensitivity of about 30 µJy/beam, with a spatial reso-
lution of about 12 arcsec. Details of the observations and data reduction, and techniques used for
data analysis, are given in the Supplementary Information.

Three ORCs (ORCs 1–3) were discovered by visual inspection of the images from the survey.
Their rarity, together with their low surface brightness, makes it unlikely that they could have been
discovered in previous radio surveys.

We discovered a further ORC (ORC 4) in archival data taken with the Giant MetreWave
Radio Telescope (GMRT)6 in March 2013. In most respects it is very similar to ORCs 1–3, but
differs in having a central radio continuum source.

Figure 1 shows the radio and optical images of the ORC 1 (top), ORCs 2 & 3 (middle) and
ORC 4 (bottom).

None of the ORCs has obvious optical, infrared, or X-ray counterparts to the diffuse emis-
sion, although in two cases there is an optical galaxy near the centre of the radio emission.

The EMU-PS area is covered by Data Release 1 of the Dark Energy Survey (DES)7 and
we use DES data throughout this paper, together with infrared data from the Wide-field Infrared
Survey Explorer (WISE)8, and, for ORC 4, optical data from the Sloan Digital Sky Survey SDSS9.
Our current ASKAP and GMRT data do not enable the measurement of polarisation or in-band
spectral index for such faint diffuse objects.

ORCs 1–2 were subsequently observed at 2.1 GHz with the Australia Telescope Compact
Array (ATCA) resulting in the images shown in Figure 2, and also found in previously observed
data at 88–154 MHz with the Murchison Widefield Array (MWA). Details of these observations
are given in the Supplementary Information.
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2 Properties of the ORCs

Detailed data for objects discussed in this section are given in the supplementary information
section.

ORC 1: EMU PD J210357.9–620014 This radio source (diameter ∼ 80 arcsec) has a near cir-
cular, edge-brightened filled morphology with brighter spots around its periphery. Figure 3 shows
the radio contours overlaid on the DES 3-color (gri) optical image. There is no optical emission
corresponding to the ring. The typical radio brightness over ORC 1 in the ASKAP image is ∼ 130
µJy/beam, with an integrated flux density of 5.45 mJy. By comparing our data from all the radio
observations, listed in the Supplementary Information, we derive a spectral index of the diffuse
emission of−1.27± 0.08. Such a steep spectral index may indicate an ageing electron population,
as often found in SNRs, cluster haloes, and dying radio galaxies.

On the southern edge of the ring is a bright radio source (labelled “S” in Figure 2) which is
associated with a galaxy detected both by WISE (WISE J210257.88–620046.3) 8 and by GALEX
(GALEXASC J210257.91–620045.4) 10. The WISE colours indicate that this is a star-forming
galaxy, and possibly a starburst or LIRG (luminous infrared galaxy). Unfortunately no redshift has
been measured for this object.

The radio observations listed in Table 2 show that source S has a spectral index of∼ −1.24±
0.35, making it more likely to be an active galactic nucleus (AGN) than a star-forming galaxy. The
space density of radio sources in the EMU-PS at least as bright as source S is ∼ 390 per deg2,
giving a ∼ 15% probability that this is a unrelated source. It is therefore possible that this is an
unrelated object, physically unconnected to the diffuse object.

At the centre of the ring is a faint optical object (WISE J210258.15–620014.4), labelled “C”
in Figure 2, with no detectable radio emission in any of our observations. The enlarged DES gri-
band image in Figure 3 shows that this central object is extended E-W with a total extent of about
6 arcsec, (c.f. the ∼ 1 arcsec resolution of DES) and is probably a galaxy.

The WISE colours for the central object (W1–W2 = 0.079, W2–W3 < 2.045 ) do not enable
us to distinguish between

a star-forming galaxy, or a quiescent galaxy, but the optical colours suggest a quiescent
galaxy. Unfortunately no redshift has been measured for this object.

At redshifts greater than 1, 6 arcsec corresponds to a diameter of 40–60 kpc, making it
unlikely to be a normal star-forming galaxy at high redshift. The local space density of galaxies
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(6333 per sq deg at W1<15) mean that there is a 15 percent probability of there being a source
brighter than 15 mag within 10 arcsec of the centre. We therefore consider it possible that this is
an unrelated object.

One arcmin to the south-east of the radio source is a 16-magnitude galaxy (WISE J210308.23–
620055.0) which is very elongated north-south in the optical image, and also appears as an elon-
gated radio source. The WISE colours of this source are that of a spiral, so we consider it likely to
be an edge-on spiral galaxy. It appears to be unconnected to the diffuse radio object and will not
be discussed further.

ORC 2: EMU PD J205842.8–573658. Like ORC 1, this unusual radio source (diameter ∼ 80
arcsec) has a near circular, edge-brightened filled morphology with brighter spots around its pe-
riphery. Figure 4 shows the radio contours overlaid on the DES 3-color (gri) optical image.

The typical brightness over the diffuse object is ∼ 100–200 µJy/beam, and the integrated
flux density over the object (excluding sources A,B, and C) is ∼ 5.8 mJy at 944 MHz.

To the north-east of ORC 2 in the ASKAP image is a pair of strong radio components. The
ATCA image (Figure 2) shows a flat-spectrum source between them which is not visible on the
ASKAP image, but which appears to be the central component of a double-lobed radio source,
and which is within ∼ 1 arcsec of the nearby optical galaxy labelled “B”. However, this optical
galaxy appears to be a 2.5 arcsec extended spiral galaxy, at a redshift of 0.35, which seems to be
an unlikely host for a double-lobed radio galaxy, so this may be a chance association.

The space density of components in the EMU-PS at least as strong as source B is about 219
per deg2, so the probability of finding B within 1 arcmin of the ORC is about 19%, and so we
consider it possible that this source is an unrelated object.

Within the eastern limb of ORC 2 in the ASKAP image is a compact radio source which is
coincident with the galaxy labelled C is Table 4, which appears to be an edge-on galaxy. The space
density of components in the EMU-PS at least as strong as source C is about 1000 per deg2, so
the probability of finding B within 1 arcmin of the ORC is about 90%, and so we consider it likely
that this source is an unrelated object.

ORC 3: EMU PD J205856.0-573655. Immediately to the east of ORC 2 is a another faint circular
patch, which is visible in two independent observations with ASKAP, but is too faint to be seen
in ATCA or MWA data. This faint diffuse patch has a typical brightness of ∼ 50–80 µJy/beam,
and the integrated flux density over the object is ∼ 1.6 mJy at 944 MHz. It has a spectral index of
∼ −0.50, although this is quite uncertain because it depends on two upper limits and one detection.
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ORC 3 appears to be a fainter example of the ORC phenomenon exhibited by ORCs 1 and 2,
but it is puzzling that it is so close to ORC 2. Within the EMU-PS, there are 2 very obvious ORCs
(ORCs 1 and 2) and about six fainter “candidate ORCs”, giving a space density of ∼ 0.03 per
deg2. The probability of one of these lying within 2 arcmin is therefore about 10−4. We therefore
consider it unlikely that this is a chance association, but instead deduce that ORC 2 and ORC 3 are
in some way related.

ORC 4 We discovered ORC 4 in archival observations of the cluster Abell 2142 taken at 325 MHz
with the Giant MetreWave Radio Telescope (GMRT)6 in March 2013. Details of the observation
are given in the supplementary information and in 11. In most respects ORC 4 is very similar to
ORCs 1–3, but differs in having a central radio continuum source.

ORC 4 is marginally detected at 150 MHz in TGSS12 and at 1.4 GHz in NVSS13, but in both
cases the image quality is poor because of poor sensitivity, uv-coverage, and low resolution. The
measured total flux densities are given in Table 3.

Combining all aperture flux measurements, we fit a single spectral index α = –0.93± 0.26. 1

ORC 4 differs from the other ORCs in having a central radio source, labelled “G” in Figure
1, which is listed in the NVSS catalogue 13 as NVSS J155524+272629. It is coincident with a
red galaxy seen in both SDSS and Pan-Starrs images, and detected by WISE. The compact source
has an unambiguous optical/IR counterpart in SDSS (SDSS J155524.63+272634.3) and WISE
(WISEA J155524.65+272633.7) with a photometric redshift of 0.3914 implying a linear size of the
ring of 430 kpc × 320 kpc.

Summary of ORC properties The four ORCs discussed here are similar in displaying a strong
circular symmetry. They are also similar in (a) having a diameter about 1 arcmin, (b) having a
steep spectral index α ∼ −1 (c) being at high Galactic latitude. They differ in that (a) two of them
have a central galaxy while two do not, and (b) three of them (ORCs 1, 2 & 4) consist of a partly
filled ring while one (ORC 3) seems to be a uniform disc. The radial profiles of the ORCS are
shown in Figure 6. ORC 1, ORC 2, and ORC 4 are similar in having a filled but edge-brightened
disc, while ORC 3 decreases monotonically from the centre.

There is also the puzzling fact that two of them are very close together, implying that these
two ORCs have a common cause.

If the central galaxy in ORC 4 is associated with the ring, then the ring is at a redshift of 0.39
and has a size of 350 × 280 kpc.

1For a source with flux density S at frequency ν, we define spectral index α as S ∝ να
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We estimated proper motion by comparing the positions of ORCs 1 and 2 in the ASKAP
(taken in November 2019) and ATCA observations (taken in March 2020). This is difficult because
of their diffuse nature and the low SNR of the ATCA observations, but we estimate an upper limit
of about 4 arcsec on any spatial shift of the diffuse emission between the two sets of observations,
which rules out a solar system object.

3 Discussion

We now consider possible explanations of these objects. For the purposes of this discussion, we
assume all four to have a similar cause, although we acknowledge that it is possible that we may
have more than one type of object represented in the class of ORCs.

Imaging Artefact Circular artefacts are well-known in radio images, and are often caused by
imperfect deconvolution of a strong source, resulting in some fraction of the telescope point-
spread-function appearing in the final image. However, ORCs 1 and 2 are clearly imaged with
two different telescopes, at different times, with different processing software, and all ORCs have
been detected by more than one telescope. We therefore consider artefacts to be a very improbable
explanation.

Supernova Remnant The morphology of the ORCs is remarkably similar to some typical super-
nova remnants (SNRs) 15–19. We calculate the probability that the ORCs are SNRs as follows. The
EMU-PS covers about 270 sq deg of sky at a galactic Latitude of 40◦. We therefore model the
EMU-PS as a cone of half-angle 9.3◦ at an angle of 40◦ (the Galactic latitude) from the mid-plane
of a disc 1 kpc thick. The volume of Galaxy being surveyed by EMU-PS is therefore 0.02 kpc3.
Assuming the Galaxy to be a uniform disc of radius 10 kpc and thickness 1 kpc, the fraction of the
Galaxy surveyed by EMU-PS is therefore 6× 10−5, in which we detect 3 ORCs. If the ORCs are
SNR, then this implies the Galaxy contains ∼50,000 SNRs. There are ∼350 confirmed SNRs in
the Galaxy 17. Even if the Galactic population were as high as 1000 SNRs, the probability of find-
ing one of them in EMU-PS, assuming they are uniformly distributed, is 6%, and the probability
of finding three is 0.02%. We therefore consider it unlikely that these are SNRs.

Galactic Planetary Nebula Planetary nebulae (PNe) can also appear as diffuse disks of radio
emission 20. The spectral index α of PNe are reported in two surveys 21, 22 to be in the range
−1 ≤ α ≤ +1 . However, both surveys suffer from large uncertainties because of poor frequency
coverage. It has aslo been argued 23 that optically thick PNe have a radio spectral index α ∼+2 and
optically thin PNe have α ∼–0.1, neither of which is close to the typical spectral index of ORCs
of α ∼ –1.

However, the strongest argument against PNe as an explanation for ORCs is that only about
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3000 PNe are known24, so following the same argument as for SNRs, the probability of finding
three in the EMU-PS is about 0.05%. We therefore consider it unlikely that the ORCs are PNe.

Face-on star-forming galaxy or ring galaxy Ring-shaped star-forming galaxies such as the Cartwheel
galaxy are well-known 25, and some nearby, nearly face-on spiral galaxies have star-forming rings,
typically detected in the Hα emission line and in radio continuum 26, 27. An example detected by
ASKAP is shown in Figure 7. However, in all known cases these ring galaxies and starburst rings
are bright at optical wavelengths, which contrasts with the lack of measurable optical emission
from the ORCs on a similar scale to the radio emission. If the ORC emission corresponded to the
size of a typical disk galaxy (∼10–20 kpc) it would lie at a distance of about 25–50 Mpc (z ∼ 0.01).
The emission from such a large, nearby face-on disk galaxy would be easily detectable in the DES
imaging. We therefore do not consider these to be a likely explanation for ORCs.

Lobe from a double-lobed radio galaxy, viewed side-on The ORCs might, in principle, be one
lobe of a double-lobed radio galaxy. For example, the radio galaxy Fornax A has two near-circular
radio lobes, shown in Figure 8. However, we consider this unlikely for the following reasons:

• The ORCs are strikingly circular, and edge-brightened, unlike the morphology typically seen
in double-lobed radio galaxies.

• While ORCs 2 and 3 could conceivably be a double-lobed radio source, there is no corre-
sponding lobe to ORCs 1 or 4.

• For ORCs 2 and 3, there is no sign of a central optical or radio host source between the two
lobes. Source C in the limb of ORC 2 could potentially be a host, but it is an edge-on spiral
galaxy, which rarely host double-lobed radio sources.

• For ORCs 2 and 3, the brightnesses of the two lobes are quite different, in which case we
would also expect morphological differences between the lobes, and yet they have identical
sizes and shapes.

Lobe from a double-lobed radio galaxy, viewed end-on If a radio-loud AGN is viewed “down
the barrel” of the jet, the end-on radio lobe can appear as a circular object, as seen in some BL
Lac sources 28. If the central radio source were precessing, then the central spot could in principle
be a circle, although this has not yet been observed. However, such sources are accompanied by
(in the case of a BL Lac source) a bright, blue, unresolved (sub-arcsec) optical counterpart, or (in
the case of a radio galaxy) by a quiescent galaxy, and neither of these are seen in ORCs 2 and 3.
Furthermore, in such sources, the central radio emission is brighter than the fainter halo.

There is also a problem with the inferred physical sizes. If the ORCs are at redshifts at z ∼
0.4 – 1, which is consistent with faint optical counterparts and with the measured redshift of source
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G in ORC 4, then the transverse sizes would be of order of 500 kpc, which is more than an order
of magnitude greater than is observed in other radio galaxies.

Another possibility is that a population of radio galaxies with edge-brightened lobes, such as
the one in Figure 9, could provide the parent population. This source has a total extent of 150” and
a width of 40”, with an edge on the southern lobes that is 30-50% brighter than the central regions
of the lobe. Such extremely faint sources would be detected more easily when viewed end-on,
where they would appear ORC-like. However, such sources would still have a bright central AGN,
which is not seen in all ORCs, and the inferred transverse sizes of 100s of kpc appear implausible.

ORC-like structures could also appear from the end-on view of bubbles or tori from buoy-
antly rising old lobes of radio galaxies in a cluster atmosphere 29, 30. In a later stage of evolution,
these could even be re-energized and become visible through collisions with shocks 31 and be re-
sponsible for elliptical ring-like radio “relics” produced during cluster mergers 32, if seen edge
on. However, these suffer from the problems that (a) such relics do not have the strong circular
symmetry of the ORCs, and (b) no cluster is seen associated with most ORCs,

Another possibility is that a radio galaxy can leave behind a blob of plasma, which can then
form a vortex ring if it encounters a shock. Although the initial shape of the ring is likely to be
irregular, reflecting the irregular intersection cross section, the vortex ring is self-propagating and
tends to circularize with time 33, 34. Such a blob/shock encounter was proposed to explain the large
ring at the end of NGC 1265 35. After the AGN has turned off, the re-energized synchrotron-
emitting ring may not show any obvious connection to its parent galaxy.

A bent-tail radio galaxy In a bent-tail radio galaxy, the two jets are bent/curved by their relative
motion through the intra-cluster medium. In the case of the source shown in Figure 10, the bending
is so severe as to form almost a circle, and its formation would require additional forces or jet
variations over and above relative motion. In the case of ORC 1, it could be argued that source S
is the host galaxy. However, jets from SF galaxies are rare, and bent ones have not yet been seen.
Similar to the ORCs, there is faint central emission between the bent tails, approximately 30% as
bright as the tails. However, no bent-tail galaxy, in including the source shown in Figure 10, shows
the striking circular symmetry of the ORCs, and so we do not consider this to be a likely cause of
the ORCs.

Einstein Ring Gravitational lensing of background sources can produce arcs of emission. If the
source, lens, and observer are aligned, then the lensed image can take the form of a so-called
Einstein ring. For example, the radio gravitational (compound) lens PKS 1830–211, consists of
a ∼1 arcsec diameter ring 36. However, such Einstein rings are rarely more than a few arcsec
in diameter. Much larger gravitational lenses are known 37 but the lensed image in such cases
is irregular, consisting of a number of sub-images, because neither the lensing source nor the
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background source is sufficiently smooth and axisymmetric to produce a circle. A ring similar to
the ORCs could in principle be produced by a lensing cluster of mass 2× 1015M� at a redshift of
1, but (a) there is no sign of a visible cluster within the rings, and (b) it is unlikely that such a lens
would be sufficiently symmetric, and perfectly aligned with the background source, to produce the
observed circular symmetry.

Ring around Wolf-Rayet star Wolf-Rayet (WR) stars can eject bubbles of material that appear at
both radio and optical wavelengths as a ring of emission 38. About 220 WR stars are known in our
Galaxy, although it is estimated that there could be as many as 2000. However, the radio emission
associated with WR stars is typically of size a few arcsec or less39 and they generally have a flatter
spectral index than the ORCs40. We therefore consider WR stars to be an unlikely cause of the
ORCs.

Cluster halo Clusters of galaxies often show diffuse radio halos about an arcmin in diameter 41, 42.
However, their morphology is typically irregular, and punctuated by radio emission from their
constituent galaxies, and sometimes with a a diffuse relic towards the edge. Radio halo brightness
profiles typically peak at the centre and decrease radially without any ring-like structures. They are
often observed as patchy, but none, to the best of our knowledge, shows the circularly symmetric
edge-brightening seen in the ORCs. Furthermore, cluster halo emission is generally accompanied
by a cluster of galaxies and no cluster of galaxies is seen within the ORCs, nor listed in any of the
cluster catalogues covering this area (listed by Manojlović et al., 2020, in preparation).

We therefore consider it unlikely that the ORCs are cluster halos. The possibility that ORCs
are related instead to radio “relics” seen at the peripheries of merging clusters is discussed in
Section 3.

Galactic Wind Termination Shock The winds from star-forming galaxies create a bubble sur-
rounded by a termination shock. For a Milky Way-like galaxy forming ∼few M�/year in an
isotropic environment, a roughly spherical galactic wind termination shock at a distance of ∼ (few
- 10) × 10 kpc is predicted 43, 44; to reproduce the observed ∼1 arcmin angular diameter scale of
an ORC, a galaxy with a termination shock at 30 kpc would then need to be located at an angular
diameter distance of ∼ 100 Mpc or z ∼ 0.02.

This shock at velocity v will accelerate cosmic ray electrons to an energy limited by inverse
Compton cooling of

Ee,max ∼ 1013 eV

(
B

0.1 µG

)−1/2 (
v

500 km/s

)
where we have normalised v to a conservatively small characteristic flow speed and a 0.1 µG field
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45. This implies that the termination shock associated with a star-forming galaxy should be easily
capable of accelerating CR electrons to the∼ few× 10 GeV energies at which they would produce
synchrotron radiation at ∼1 GHz.

The energetics of this scenario are also reasonable: assuming that non-thermal electrons
account for 1% of the mechanical power dissipated at the putative shock, a mJy source located at
z ∼ 0.02 requires a shock dissipating∼ 1036−37 erg/s which can be easily energised by a host with
a star formation rate of a few solar masses per year.

While this is a theoretical possibility, such a shock has not yet been observed elsewhere.

4 Conclusion

We have discovered, to the best of our knowledge, a new class of radio-astronomical object, con-
sisting of a circular disc, which in some cases is limb-brightened, and sometimes contains a galaxy
at its centre. None of the known types of radio object seems able to explain it. For example, if
the ORCs are SNRs, which they strongly resemble, then this implies a population of SNRs in the
Galaxy some 50 times larger than the currently accepted figure, or else a new class of SNR which
has not previously been reported.

We therefore consider it likely that the ORCs represent a new type of object found in radio-
astronomy images. The edge-brightening in some ORCs suggests that this circular image may
represent a spherical object, which in turn suggests a spherical wave from some transient event.
Several such classes of transient events, capable of producing a spherical shock wave, have recently
been discovered, such as fast radio bursts 46, gamma-ray bursts47, and neutron star mergers48.
However, because of the large angular size of the ORCs, any such transients would have taken
place in the distant past.

It is also possible that the ORCs represent a new category of a known phenomenon, such
as the jets of a radio galaxy or blazar when seen end-on, down the “barrel” of the jet. Alterna-
tively, they may represent some remnant of a previous outflow froma. radio galaxy. However,
no existing observations of this phenomenon closely resemble the ORCs in features such as the
edge-brightening or the absence of a visual blazar or radio galaxy at the centre.

We also acknowledge the possibility that the ORCs may represent more than one phe-
nomenon, and that they have been discovered simultaneously because they match the spatial fre-
quency characteristics of the ASKAP observations, which occupy a part of the observational pa-
rameter space which has hitherto been poorly studied.
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Further work is continuing to investigate the nature of these objects.
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SUPPLEMENTARY INFORMATION

1 Data availability.

All EMU-PS data (tables and images, and uv data) are available from CASDA on http://hdl.
handle.net/102.100.100/164555?index=1 or from https://data.csiro.au/
dap/public/casda/casdaSearch.zul under project code AS101. A zoomable image of
the EMU-PS survey is available on http://emu-survey.org. A listing of observations is on
https://apps.atnf.csiro.au/OMP/index.jsp.

2 ASKAP Observations

ASKAP consists of 36 × 12-m antennas, each of which is equipped with a chequerboard Phased
Array Feed (PAF), giving a field of view of about 30 square degrees of the sky, resulting in a high
survey speed. We used a 36 PAF beams, with the beam centres separated by 0.9 degrees, arranged
in the “Closepack36” configuration1. A full description of ASKAP may be found in Hotan et al.
(2020; in preparation).

The EMU Pilot Survey1 (hereafter EMU-PS), the source of the discoveries described here,
consists of ten observations, each lasting 10–12 hours, in the period 15 July to 24 November 2019.
Between 32 and 36 ASKAP antennas were used in each observation, always including the outer
four, with baselines up to 6.4 km, with the remaining antennas within a region of 2.3 km diameter.
Specifications of the observations are given in Table 1.

We processed the data using the ASKAPsoft pipeline1,2, including w-projection multifre-
quency synthesis imaging, multiscale clean, and self-calibration.

3 ATCA Observations

We observed ORC 1 and ORCs 2–3 (Project code C3350) with the Australia Telescope Compact
Array (ATCA) on 9–10 April 2020, at 1.1–3.1 GHz (weighted central frequency after the removal
of radio frequency interference = 2121 MHz), over a period of 2 × 12 hours using the 6A configu-
ration. The data were processed using miriad, using the standard ATCA multi-frequency synthesis
process, and cleaned with a robustness of +0.5. The observations were affected by radio frequency
interference, resulting in a relatively high rms of ∼ 10–15 µJy/beam, with a synthesised beamsize
of 5.0 × 4.3 arcsec.
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Table 1: EMU Pilot Survey Specifications

Area of survey 270 deg2

Field centre 21h, –55 degr

Synthesised beamwidth 13′′ × 11′′ FWHM

Frequency range 800 – 1088 MHz

Observing configuration closepack36, pitch 0.9◦

no interleave

Weighting Robust = 0

RMS sensitivity 25 – 35 µJy/beam

Total integration time 100 hours

Number of sources detected ∼250,000
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4 GMRT Observations

ORC-4 was found in archival 325 MHz GMRT data taken on the cluster source project (ID 23
017)3 on the cluster Abell 2142. The data were reprocessed with the SPAM pipeline4 yielding a
sensitivity of 47 µJy/beam at the field center, and a resolution of 9.4 × 7.9 arcsec. At the location
of the ring the sensitivity is 66 µJy/beam, mainly due to primary beam attenuation.

5 MWA Observations

The observations with the Murchison Widefield Array5 in its ‘Phase II’ extended configuration
(hereafter MWA-26) were taken as part of project G0045 which aims to image diffuse, non-thermal
radio emission in galaxy clusters across five frequency bands of ∆ν = 30 MHz centered on 88,
118, 154, 185, and 216 MHz. As these observations have a large field of view, ORC1 and ORC2
fall within the primary beam main lobe half power point in one of the observed fields: ‘FIELD4’.
MWA observations of this form are taken in a 2-min snapshot mode due to a fixed primary beam.
All data undergo radio frequency interference flagging using AOFlagger7. To increase integra-
tion time on a source, large numbers of 2-min snapshots are independently calibrated with the
full-Jones Mitchcal algorithm8, independently imaged, and finally stacked in the image plane
as a linear mosaic.

MWA-2 data reduction for this work follows the process described in detail by Duchesne et
al. (submitted), using a purpose-written MWA-2 pipeline (piip 2).

6 Radio properties

To measure flux densities, we used the measure source.py tool 3, in which a polygon is drawn
around the source9 The resulting flux densities are shown in Table 2.

Spectral indices were derived by weighted least-squares fitting to the flux densities listed in
the Tables, assuming a power-law spectral energy distribution. The uncertainty on the spectral
index was estimated using the leastsq algorithm in scipy.optimize4.

2https://gitlab.com/Sunmish/piip
3https://github.com/nhurleywalker/polygon-flux
4https://docs.scipy.org/doc/scipy/reference/optimize.html
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7 Optical/IR properties

The redshifts listed in Table 4 are taken from the Dark Energy Survey photometric redshift survey10,
which are most reliable in the redshift range 0.5–1, and so we do not regard these redshifts as reli-
able.

Photometry for the galaxies that may be associated with the ORCs were taken from the DES7

, WISE11, and GALEX12 surveys and are listed in Tables 4 to 5.

Galaxy classification was estimated using the WISE colours, following the WISE colour-
colour diagram11, and also using the DES and Galex colours in a colour-magnitude diagram13.
However these classifications are quite uncertain because most of the galaxies do not have a spec-
troscopic redshift.
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Table 1: The new circular objects (“ORCs”)
ID Name RA (deg) Dec (deg) l b survey

J2000 J2000 (deg) (deg)

ORC 1 EMU PD J210357.9–620014 315.74292 –62.00444 333.41592 -39.00906 EMU-PS

ORC 2 EMU PD J205842.8–573658 314.67833 –57.61611 339.08813 -39.52277 EMU-PS

ORC 3 EMU PD J205856.0-573655 314.73458 –57.61528 339.08147 -39.55247 EMU-PS

ORC 4 155524.63+272634.7 238.85272 +27.44271 44.35860 49.36566 GMRT

Table 2: Integrated Flux Densities (in mJy) and spectral indices of the radio sources associated with

ORCs 1–3. We estimate an uncertainty of 20% on all flux density measurements. Measurements

at 88, 118, and 154 MHz are made with MWA. Measurements at 944 MHz are made with ASKAP.

Measurements at 2121 MHz are made with ATCA. MWA measurements of ORC 1 include the

flux density of source S, and MWA measurements of ORC 2 include the flux density of source C.

However, these will have a negligible effect on the fitted spectral indices.
source 88 118 154 944 2121 α

MHz MHz MHz MHz MHz

ORC 1 105±16.5 69.5±8.6 38±6.0 6.26±1.25 2.29±0.23 –1.17±0.04

ORC 1(S) . 0.60±0.12 0.15±0.03 –1.71±0.35

ORC 2 28±14.4 25±6.8 14±5.3 6.97±1.39 2.31±0.23 –0.80±0.08

ORC 2(A) 0.46±0.10 0.46±0.05 0.0±0.34

ORC 2(B) 0.76±0.15 0.66±0.07 –0.17±0.22

ORC 2(C) 0.19±0.05 0.07±0.03 –1.23±0.36

ORC 3 <5 1.86±0.37 <1.0 –0.50±0.20

Table 3: Measured Flux Densities (in mJy) of the radio sources associated with ORC 4. 150 MHz

data are from TGSS12, 325 MHz data are from the observations described in the text, and 1400

MHz data are from the NVSS survey49. The flux densities for the ring are the total flux densities

(including source G) measured in a 2 arcmin diameter aperture, and that for source G is from a

fitted Gaussian component.
source 150 325 1400 α

MHz MHz MHz

ORC 4 39±10 28±2.8 5.3±0.7 –0.92±0.18

ORC 4(G) 1.43±0.13
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Figure 1: ASKAP radio continuum images at 944 MHz of ORCs 1–3 from the EMU Pilot Survey1,

and at 325 MHz of ORC 4 from GMRT archival data. On the left are greyscale images, with the

synthesized beam shown in the bottom left corner, and radio contours overlaid onto DES optical

images on the right, as described in the text. The contour levels for ORC 1 and ORC 2 are 45,

90, 135, 180, 225, and 270 µJy beam−1, and contour levels for ORC 4 are 150, 250, 400, 600, and

800 µJy beam−1. Sources of interest are labelled (see Tables 3 & 4).
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Figure 2: ATCA radio continuum images of ORCs 1–3 at a frequency of 2.1 GHz. The image

rms is about 12 µJy/beam in both images. ORCs 1 and 2 are only faintly visible in these higher-

frequency images, because of their steep spectral index and higher resolution, while ORC 3 is

below the rms noise level. This image shows that sources A and B in ORC 2 are the two lobes of

an FRI radio galaxy.
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Figure 3: ASKAP radio continuum image of ORC 1 (contours; see Fig. 1) overlaid onto a DES 3-

color composite image; DES gri-bands are colored blue, green, and red, respectively. We identify

two galaxies of interest: “C” lies near the centre of ORC 1 and “S” coincides with the southern

radio peak (see Table 3).
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Figure 4: ASKAP radio continuum image of ORC 2 (contours; see Fig. 1) overlaid onto a DES 3-

color composite image; DES gri-bands are colored blue, green, and red, respectively. We identify

three sources of interest, annotated A, B and C (see Table 4).
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Figure 5: GMRT radio continuum image of ORC 4 (contours; see Fig. 1) overlaid onto a SDSS

3-color composite image; SDSS gri-bands are colored blue, green, and red, respectively.
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ORC 4

Figure 6: Radial profiles of the diffuse emission of the ORCS, measured from the ASKAP and

GMRT data, and integrated radially around the ORC, assuming circular symmetry, after removing

compact sources A and B in ORC 2. Error bars are σ / sqrt (number of independent beam volumes),

where σ = 25µJy/beamfor the EMU data (ORCS 1, 2, and3), and 60µJy/beamfor the uGMRT

data (ORC 4).
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Figure 7: ASKAP 944 MHz radio continuum image of the face-on, star-forming galaxy NGC 6935

(v = 4543 km s−1), as observed in the EMU-PS.
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Figure 8: ASKAP 944 MHz radio continuum image of the double-lobe radio galaxy Fornax A,

from unpublished ASKAP data.
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Figure 9: EMU-PS image of the edge-brightened double-lobe radio galaxy EMU PD J2109:31.3-

602806
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Figure 10: EMU-PS image of the bent-tail radio galaxy EMU PD J214905.4-614542. The position

of the host galaxy is indicated by an arrow.
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