31 research outputs found

    Immunoresponsive Gene 1 Augments Bactericidal Activity of Macrophage-Lineage Cells by Regulating ÎČ-Oxidation-Dependent Mitochondrial ROS Production

    Get PDF
    SummaryEvidence suggests the bactericidal activity of mitochondria-derived reactive oxygen species (mROS) directly contributes to killing phagocytozed bacteria. Infection-responsive components that regulate this process remain incompletely understood. We describe a role for the mitochondria-localizing enzyme encoded by Immunoresponsive gene 1 (IRG1) during the utilization of fatty acids as a fuel for oxidative phosphorylation (OXPHOS) and associated mROS production. In a zebrafish infection model, infection-responsive expression of zebrafish irg1 is specific to macrophage-lineage cells and is regulated cooperatively by glucocorticoid and JAK/STAT signaling pathways. Irg1-depleted macrophage-lineage cells are impaired in their ability to utilize fatty acids as an energy substrate for OXPHOS-derived mROS production resulting in defective bactericidal activity. Additionally, the requirement for fatty acid ÎČ-oxidation during infection-responsive mROS production and bactericidal activity toward intracellular bacteria is conserved in murine macrophages. These results reveal IRG1 as a key component of the immunometabolism axis, connecting infection, cellular metabolism, and macrophage effector function

    Partial loss of actin nucleator actin-related protein 2/3 activity triggers blebbing in primary T lymphocytes

    Get PDF
    T lymphocytes utilize amoeboid migration to navigate effectively within complex microenvironments. The precise rearrangement of the actin cytoskeleton required for cellular forward propulsion is mediated by actin regulators, including the actin‐related protein 2/3 (Arp2/3) complex, a macromolecular machine that nucleates branched actin filaments at the leading edge. The consequences of modulating Arp2/3 activity on the biophysical properties of the actomyosin cortex and downstream T cell function are incompletely understood. We report that even a moderate decrease of Arp3 levels in T cells profoundly affects actin cortex integrity. Reduction in total F‐actin content leads to reduced cortical tension and disrupted lamellipodia formation. Instead, in Arp3‐knockdown cells, the motility mode is dominated by blebbing migration characterized by transient, balloon‐like protrusions at the leading edge. Although this migration mode seems to be compatible with interstitial migration in three‐dimensional environments, diminished locomotion kinetics and impaired cytotoxicity interfere with optimal T cell function. These findings define the importance of finely tuned, Arp2/3‐dependent mechanophysical membrane integrity in cytotoxic effector T lymphocyte activities

    Rough and smooth variants of Mycobacterium abscessus are differentially controlled by host immunity during chronic infection of adult zebrafish.

    Get PDF
    Prevalence of Mycobacterium abscessus infections is increasing in patients with respiratory comorbidities. After initial colonisation, M. abscessus smooth colony (S) variants can undergo an irreversible genetic switch into highly inflammatory, rough colony (R) variants, often associated with a decline in pulmonary function. Here, we use an adult zebrafish model of chronic infection with R and S variants to study M. abscessus pathogenesis in the context of fully functioning host immunity. We show that infection with an R variant causes an inflammatory immune response that drives necrotic granuloma formation through host TNF signalling, mediated by the tnfa, tnfr1 and tnfr2 gene products. T cell-dependent immunity is stronger against the R variant early in infection, and regulatory T cells associate with R variant granulomas and limit bacterial growth. In comparison, an S variant proliferates to high burdens but appears to be controlled by TNF-dependent innate immunity early during infection, resulting in delayed granuloma formation. Thus, our work demonstrates the applicability of adult zebrafish to model persistent M. abscessus infection, and illustrates differences in the immunopathogenesis induced by R and S variants during granulomatous infection

    Contributions of mean and shape of blood pressure distribution to worldwide trends and variations in raised blood pressure: A pooled analysis of 1018 population-based measurement studies with 88.6 million participants

    Get PDF
    © The Author(s) 2018. Background: Change in the prevalence of raised blood pressure could be due to both shifts in the entire distribution of blood pressure (representing the combined effects of public health interventions and secular trends) and changes in its high-blood-pressure tail (representing successful clinical interventions to control blood pressure in the hypertensive population). Our aim was to quantify the contributions of these two phenomena to the worldwide trends in the prevalence of raised blood pressure. Methods: We pooled 1018 population-based studies with blood pressure measurements on 88.6 million participants from 1985 to 2016. We first calculated mean systolic blood pressure (SBP), mean diastolic blood pressure (DBP) and prevalence of raised blood pressure by sex and 10-year age group from 20-29 years to 70-79 years in each study, taking into account complex survey design and survey sample weights, where relevant. We used a linear mixed effect model to quantify the association between (probittransformed) prevalence of raised blood pressure and age-group- and sex-specific mean blood pressure. We calculated the contributions of change in mean SBP and DBP, and of change in the prevalence-mean association, to the change in prevalence of raised blood pressure. Results: In 2005-16, at the same level of population mean SBP and DBP, men and women in South Asia and in Central Asia, the Middle East and North Africa would have the highest prevalence of raised blood pressure, and men and women in the highincome Asia Pacific and high-income Western regions would have the lowest. In most region-sex-age groups where the prevalence of raised blood pressure declined, one half or more of the decline was due to the decline in mean blood pressure. Where prevalence of raised blood pressure has increased, the change was entirely driven by increasing mean blood pressure, offset partly by the change in the prevalence-mean association. Conclusions: Change in mean blood pressure is the main driver of the worldwide change in the prevalence of raised blood pressure, but change in the high-blood-pressure tail of the distribution has also contributed to the change in prevalence, especially in older age groups

    A zebrafish model of tuberculosis comorbidity and the effects of HIF‐activating intervention

    Get PDF
    Comorbidities are an important factor in tuberculosis pathophysiology and treatment but are understudied in animal models. Schild et al. present a zebrafish model of Mycobacterium marinum infection and wound comorbidity that retains responsiveness to protective hypoxia-inducible factor-1α activation as an example of a host-directed therapy. This platform is a new paradigm for the zebrafish-M. marinum infection model and provides a blueprint to test therapeutic interventions on infection and comorbid pathologies. Comment on: https://doi.org/10.1111/febs.15433

    The inflammatory bowel disease (IBD) susceptibility genes NOD1 and NOD2 have conserved anti-bacterial roles in zebrafish

    No full text
    SUMMARY Inflammatory bowel disease (IBD), in the form of Crohn’s disease (CD) or ulcerative colitis (UC), is a debilitating chronic immune disorder of the intestine. A complex etiology resulting from dysfunctional interactions between the intestinal immune system and its microflora, influenced by host genetic susceptibility, makes disease modeling challenging. Mutations in NOD2 have the highest disease-specific risk association for CD, and a related gene, NOD1, is associated with UC. NOD1 and NOD2 encode intracellular bacterial sensor proteins acting as innate immune triggers, and represent promising therapeutic targets. The zebrafish has the potential to aid in modeling genetic and environmental aspects of IBD pathogenesis. Here, we report the characterization of the Nod signaling components in the zebrafish larval intestine. The nod1 and nod2 genes are expressed in intestinal epithelial cells and neutrophils together with the Nod signaling pathway genes ripk2, a20, aamp, cd147, centaurin b1, erbin and grim-19. Using a zebrafish embryo Salmonella infection model, morpholino-mediated depletion of Nod1 or Nod2 reduced the ability of embryos to control systemic infection. Depletion of Nod1 or Nod2 decreased expression of dual oxidase in the intestinal epithelium and impaired the ability of larvae to reduce intracellular bacterial burden. This work highlights the potential use of zebrafish larvae in the study of components of IBD pathogenesis

    Exposure to the gut microbiota from cigarette smoke-exposed mice exacerbates cigarette smoke extract-induced inflammation in zebrafish larvae.

    No full text
    Cigarette smoke (CS)-induced inflammation leads to a range of diseases including chronic obstructive pulmonary disease and cancer. The gut microbiota is a major modifying environmental factor that determine the severity of cigarette smoke-induced pathology. Microbiomes and metabolites from CS-exposed mice exacerbate lung inflammation via the gut-lung axis of shared mucosal immunity in mice but these systems are expensive to establish and analyse. Zebrafish embryos and larvae have been used to model the effects of cigarette smoking on a range of physiological processes and offer an amenable platform for screening modifiers of cigarette smoke-induced pathologies with key features of low cost and rapid visual readouts. Here we exposed zebrafish larvae to cigarette smoke extract (CSE) and characterised a CSE-induced leukocytic inflammatory phenotype with increased neutrophilic and macrophage inflammation in the gut. The CSE-induced phenotype was exacerbated by co-exposure to microbiota from the faeces of CS-exposed mice, but not control mice. Microbiota could be recovered from the gut of zebrafish and studied in isolation in a screening setting. This demonstrates the utility of the zebrafish-CSE exposure platform for identifying environmental modifiers of cigarette smoking-associated pathology and demonstrates that the CS-exposed mouse gut microbiota potentiates the inflammatory effects of CSE across host species

    A chemical enterocolitis model in zebrafish larvae that is dependent on microbiota and responsive to pharmacological agents

    No full text
    Inflammatory bowel disease (IBD) results from dysfunctional interactions between the intestinal immune system and microbiota, influenced by host genetic susceptibility. Because a key feature of the pathology is intestinal epithelial damage, potential disease factors have been traditionally analyzed within the background of chemical colitis models in mice. The zebrafish has greatly complemented the mouse for modeling aspects of disease processes, with an advantage for high content drug screens. Larval zebrafish exposed to the haptenizing agent trinitrobenzene sulfonic acid (TNBS) displayed impaired intestinal homeostasis and inflammation reminiscent of human IBD. There was a marked induction of pro-inflammatory cytokines, the degradative enzyme mmp9 and leukocytosis. Enterocolitis was dependent on microbiota and Toll-like receptor signaling, that can be ameliorated by antibiotic and anti-inflammatory drug treatments. This system will be useful to rapidly interrogate in vivo the biological significance of the IBD candidate genes so far identified and to carry out pharmacological modifier screens

    Chemically induced intestinal damage models in zebrafish larvae

    No full text
    Several intestinal damage models have been developed using zebrafish, with the aim of recapitulating aspects of human inflammatory bowel disease (IBD). These experimentally induced inflammation models have utilized immersion exposure to an array of colitogenic agents (including live bacteria, bacterial products, and chemicals) to induce varying severity of inflammation. This technical report describes methods used to generate two chemically induced intestinal damage models using either dextran sodium sulfate (DSS) or trinitrobenzene sulfonic acid (TNBS). Methods to monitor intestinal damage and inflammatory processes, and chemical-genetic methods to manipulate the host response to injury are also described

    Infection-Responsive Expansion of the Hematopoietic Stem and Progenitor Cell Compartment in Zebrafish Is Dependent upon Inducible Nitric Oxide

    Get PDF
    SummaryHematopoietic stem cells (HSCs) are rare multipotent cells that contribute to all blood lineages. During inflammatory stress, hematopoietic stem and progenitor cells (HSPCs) can be stimulated to proliferate and differentiate into the required immune cell lineages. Manipulating signaling pathways that alter HSPC capacity holds great promise in the treatment of hematological malignancies. To date, signaling pathways that influence HSPC capacity, in response to hematopoietic stress, remain largely unknown. Using a zebrafish model of demand-driven granulopoiesis to explore the HSPC response to infection, we present data supporting a model where the zebrafish ortholog of the cytokine-inducible form of nitric oxide synthase (iNOS/NOS2) Nos2a acts downstream of the transcription factor C/ebpÎČ to control expansion of HSPCs following infection. These results provide new insights into the reactive capacity of HSPCs and how the blood system is “fine-tuned” in response to inflammatory stress
    corecore