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SUMMARY

Hematopoietic stem cells (HSCs) are raremultipotent
cells that contribute to all blood lineages. During in-
flammatory stress, hematopoietic stem and progen-
itor cells (HSPCs) can be stimulated to proliferate and
differentiate into the required immune cell lineages.
Manipulating signaling pathways that alter HSPC
capacity holds great promise in the treatment of
hematological malignancies. To date, signaling path-
ways that influence HSPC capacity, in response to
hematopoietic stress, remain largely unknown. Using
a zebrafish model of demand-driven granulopoiesis
to explore the HSPC response to infection, we pre-
sent data supporting a model where the zebrafish
ortholog of the cytokine-inducible form of nitric oxide
synthase (iNOS/NOS2) Nos2a acts downstream of
the transcription factor C/ebpb to control expansion
of HSPCs following infection. These results provide
new insights into the reactive capacity of HSPCs
and how the blood system is ‘‘fine-tuned’’ in re-
sponse to inflammatory stress.

INTRODUCTION

As the progenitors of all blood lineages, HSCs remain largely

quiescent and only enter the cell cycle when required to con-

tribute differentiated progeny. Recently, it has emerged that

the HSC compartment and their more short-lived multipotent

progeny (collectively termed hematopoietic stem and pro-

genitor cells [HSPCs]) can directly react to inflammatory stress

by proliferating and differentiating into the required cellular

progeny (Baldridge et al., 2011; King and Goodell, 2011; Taki-

zawa et al., 2011). Factors that influence HSPC capacity hold

promise in improving ex vivo HSPC expansion for engraft-

ment in patients with hematologic malignancies (Dahlberg

et al., 2011). Promoting quiescent HSCs to enter the cell

cycle, by inducing hematopoietic stress with inflammatory

cytokines, has also been proposed as a potential mechanism

of sensitizing dormant leukemic stem cells to the antiprolifer-

ative activities of chemotherapeutic agents (Trumpp et al.,
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2010). In light of these therapeutic applications, identifying novel

pathways that expand/activate HSPCs is an area of intense

interest.

During infection, consumption of neutrophils drives a demand-

driven granulopoietic response within the bone marrow to facil-

itate their replenishment, often at the expense of other blood

lineages (Panopoulos and Watowich, 2008; Ueda et al., 2005).

This hematopoietic response also involves reactive prolifera-

tion/expansion of the HSPC compartment (Baldridge et al.,

2010). Examining blood development in the context of inflamma-

tion and infection has resulted in the discovery of a number of

immune mediators that drive demand-driven granulopoiesis

and influence HSPC function (Baldridge et al., 2010, 2011; Hirai

et al., 2006; Panopoulos and Watowich, 2008; Scumpia et al.,

2010; Zhang et al., 2010). Well-characterized proinflammatory

cytokines such as TNF-a and IFN-g have been demonstrated

to directly influence HSCs as part of a feedback loop, in re-

sponse to depleted differentiated progeny (Baldridge et al.,

2010; Rezzoug et al., 2008). Granulocyte colony-stimulating

factor (G-CSF/CSF3) and its receptor G-CSFR/CSF3R are

essential for both steady-state and stress-induced granulopoie-

sis (Panopoulos and Watowich, 2008). This granulopoiesis-

promoting activity of G-CSF in response to infection is driven

by the CCAAT enhancer binding protein, C/EBPb (Hirai et al.,

2006; Zhang et al., 2010). Signaling components that help

regulate demand-driven neutrophil production, downstream of

C/EBPb, remain unknown.

In zebrafish (Danio rerio) the first bona fide HSCs emerge from

hemogenic endothelial cells lining the ventral dorsal aorta (DA)

from�30 hr post fertilization (hpf). These endothelial cell-derived

nascent HSCs transiently occupy the subaortic mesenchyme,

a site analogous to the mammalian aorta-gonad-mesonephros

(AGM) region, where they have been observed to undergo

limited (i.e. a single), presumably symmetric cell division (Ber-

trand et al., 2010; Kissa and Herbomel, 2010; Lam et al., 2010).

These blood progenitors are believed to maintain an HSC iden-

tity as they enter the circulation through the underlying cardinal

vein and home to the caudal hematopoietic tissue (CHT) where

they proliferate/differentiate before engrafting the definitive

hematopoietic organs, the thymus and kidney (Murayama

et al., 2006). Lineage tracing experiments suggest HSCs are

only specified during this developmental window and no longer

emerge de novo at later stages of development (Bertrand

et al., 2010).
.
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Employing a larval zebrafish model of demand-driven granulo-

poiesis to examine HSPC development through the ‘‘lens of

infection,’’ we provide new insight into how inflammatory stress

‘‘fine-tunes’’ hematopoiesis. We show that the zebrafish larval

hematopoietic system responds to infection through the reactive

expansion of the HSPC compartment. Further examination re-

vealed a previously unappreciated role for C/ebpb-dependent

Nos2a-generated nitric oxide (NO) during HSPC and neutrophil-

fated progenitor expansion following infection. These results

provide new mechanistic insight into how the HSPC compart-

ment responds to inflammatory stress.

RESULTS

Larval Hematopoietic Response to Infection
Prior to investigating the effect of infection on HSPCs, we exam-

ined whether larval hematopoiesis was responsive to infection.

To address whether zebrafish replenish neutrophils lost as

a result of cell death or apoptosis following infection, neutrophil

abundance within Tg(lyz:DsRED) larvae (a transgenic reporter

line that specifically marks neutrophils) was quantified through-

out the course of infection. To facilitate direct observation of

bacterial burden, a GFP-expressing Salmonella enterica serovar

Typhimurium (hereafter referred to as Sal-GFP) was selected

(Hall et al., 2007). Time-lapse imaging following injection of

Sal-GFP into the hindbrain ventricle of Tg(lyz:DsRED) larvae at

50 hpf (Figure 1A) revealed robust recruitment of neutrophils to

the midbrain and hindbrain. Highly motile neutrophils were

observed phagocytosing the injected bacteria as part of an

immediate innate immune response (Figure S1 and Movie S1,

available online). One day following bacterial injection (1 dpi

Infected), larvae demonstrated one of four phenotypes when

compared with PBS-injected controls (1 dpi PBS). Infected

larvae were: dead; overwhelmed by infection (such larvae never

survived to 2 dpi and were always removed from further anal-

ysis); possessing numbers of neutrophils similar to uninjected

controls that were dispersed throughout larval tissues (often

with low levels of bacterial burden remaining in the head); or

demonstrating a marked reduction in neutrophil numbers with

very little or no detectable bacterial burden (Figure S1; see also

Supplemental Experimental Procedures). Flow cytometry anal-

ysis revealing surviving larvae that possessed reduced neutro-

phil numbers at 1 dpi demonstrated a marked increase in

whole-larvae neutrophil numbers that peaked at 2 dpi before

gradually returning to steady-state levels, when compared with

PBS controls (Figure 1B).We next examinedwhether this neutro-

phil expansion was the result of enhanced granulopoiesis within

larval hematopoietic sites. Live imaging of infected larvae that

possessed an almost complete loss of neutrophils by 1 dpi

revealed de novo emergence of neutrophils within the AGM

and CHT regions from 1.25–1.5 dpi that was most evident at 2

dpi (Figures 1C and 1D). All further assessment of infection on

hematopoiesis focused on the AGM region (a region only

sparsely populated with neutrophils under steady-state condi-

tions) due to the confounding influence of steady-state granulo-

poiesis within the CHT. Throughout the remainder of this study

(unless otherwise stated), an optimized infection dose of

between 400 and 600 colony-forming units (cfu) was injected

into the hindbrain ventricle at 50 hpf. This gave a sufficient
Ce
proportion of larvae demonstrating neutrophil depletion at 1

dpi and subsequent demand-driven granulopoiesis, as scored

within the AGM region at 2 dpi (�55% to 60%of surviving larvae),

with survival of �85% to 90% (Figure S1). Unless otherwise

stated, data presented throughout the remainder of this study

as ‘‘Infected’’ refers to this surviving cohort.

In support of our live imaging studies, quantitative-(Q)PCR

analysis of the neutrophil-specific (lyz and mpx), pan-myeloid

(lcp1), and myeloid progenitor (spi1) genes following infection

demonstrated a peak in expression at �2 dpi (Figure S1)

(Lieschke et al., 2002; Lyons et al., 2001; Meijer et al., 2008).

The macrophage-specific marker csf1ra also increased fol-

lowing infection, suggesting that demand-driven hematopoiesis

may not be exclusively granulopoietic. To assess whether infec-

tion also resulted in expansion of themacrophage lineage, which

shares a common spi1-expressing progenitor with neutrophils,

we examined whether the macrophage-lineage marker mpeg1

was also expressed by cells within the AGM following infection

(Ellett et al., 2011). Although large numbers of macrophages

were detected within the infection site, consistent with the later

timing of macrophage infiltration during inflammation, no ex-

pression of mpeg1 was observed within the AGM region (Fig-

ure 1E). This was in contrast to spi1 expression, which strongly

marked myeloid progenitors within this domain (Figure 1E).

Expression analysis confirmed that these spi1-expressing pro-

genitor cells were fated to the neutrophil lineage, as evidenced

by lyz coexpression (Figure 1F).

To investigate whether demand-driven granulopoiesis influ-

enced the development of the lymphoid lineage, we examined

expression of the transcription factor ikaros, which typically

marks lymphoid progenitors within the AGM, following infection

at 2 dpi (Murayama et al., 2006; Willett et al., 2001) (Figure S1).

Quantifying the number of somite boundaries within the AGM

region containing ikaros+ cells revealed a significant decrease

in ikaros expression following infection (Figure S1). To examine

if this decrease in ikaros expression resulted in a decrease in

thymus-resident T cell precursors, we assessed the abundance

of lck-expressing thymocytes within infected double transgenic

Tg(lck:GFP)/Tg(lyz:DsRED) larvae at 3, 4, and 5 dpi, compared

with PBS controls (Figure S1). Coincident with initiation of

demand-driven granulopoiesis within the AGM and consistent

with a decrease in ikaros expression, a marked decrease in

lck:GFP-expressing thymocytes was observed following

infection.

These results demonstrate that the larval zebrafish hemato-

poietic system can respond to infection by specifically en-

hancing the production of neutrophils, at the expense of other

blood lineages.

Infected Larvae Possess an Expanded HSPC
Compartment
To demonstrate that demand-driven granulopoiesis within the

AGM was dependent upon definitive hematopoiesis (and by

association resident HSPCs), we assessed the ability of

Runx1-depleted embryos to replenish neutrophil numbers

following infection. Runx1 is a transcription factor that in zebra-

fish, as in mammals, is absolutely required for HSPC develop-

ment and definitive hematopoiesis (Lam et al., 2009). We have

shown that HSPC ontogeny, including their emergence within
ll Stem Cell 10, 198–209, February 3, 2012 ª2012 Elsevier Inc. 199



Figure 1. Larval Hematopoietic Response to Infection

(A) Schematic illustrating hindbrain injection site of live GFP-labeled Salmonella.

(B) Quantities of whole-larvae lyz:DsRED-expressing cells (per 100,000 sorted cells), as determined by flow cytometry, within infected Tg(lyz:DsRED) larvae (600

cfu) at 1, 2, 3, and 5 dpi, compared with PBS controls (n = 50 larvae/sample).

(C and D) Enhanced granulopoiesis within the AGM and CHT of infected (600 cfu) Tg(lyz:EGFP)/Tg(gata1:DsRED) larvae at 2 dpi, relative to PBS controls (with

magnified views of AGM region within similarly treated Tg(lyz:DsRED) larvae). (B)–(D) refer only to those infected larvae that displayed neutrophil depletion at 1 dpi

(see Supplemental Experimental Procedures).

(E) Expression ofmpeg1 and spi1within the AGMat 2 dpi following infection, comparedwith PBS controls. Inset demonstratesmpeg1-expressing cells within the

midbrain and hindbrain.

(F) Dual WMISH of lyz and spi1 expression within the AGM following infection at 2 dpi. All views, anterior to left.

Scale bar, 100 mm in (D). Abbreviations: AGM, aorta-gonad-mesonephros; CHT, caudal hematopoietic tissue; DA, dorsal aorta; PCV, posterior cardinal vein. See

also Figure S1.
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the subaortic mesenchyme of the AGM, can be observed within

Tg(runx1P2:EGFP) embryos (Lam et al., 2010). Morpholino oligo-

nucleotide (MO)-mediated depletion of Runx1 led to an almost

complete absence of HSPCswithin the AGM, decreased survival

postinfection, and reduced steady-state granulopoiesis (Fig-

ure S2). Live imaging of double transgenic Tg(lyz:DsRED)/

Tg(runx1P2:EGFP) larvae following infection revealed that

Runx1/HSPC-depleted larvae did not initiate demand-driven

granulopoiesis (Figure 2A). This suggested that demand-driven

production of neutrophil-fated progenitors within the AGM

develops by in situ differentiation from resident HSPCs. Of

note, live imaging of infected Tg(runx1P2:EGFP) larvae revealed
200 Cell Stem Cell 10, 198–209, February 3, 2012 ª2012 Elsevier Inc
an increase in fluorescently marked HSPCs within the AGM

following infection, a result supported by QPCR analysis of

runx1 expression (Figure S2) and validated by quantification of

cmyb-expressing HSPCs within the AGM following infection

(Figures 2B and 2C).

In mammals, although enriched in HSPCs, c-myb is also

expressed within more committed blood cells (Kastan et al.,

1989). In zebrafish, the earliest cells classified as HSCs are those

that have directly differentiated from hemogenic endothelial cells

(endothelial cells possessing hematopoietic potential) that line

the ventral wall of the DA. Nascent HSCs then transiently occupy

the subaortic mesenchyme between the main trunk vessels
.



Figure 2. HSPC Compartment Expands in Response to Infection

(A) Confocal imaging through the AGM of control MO- and Runx1 MO-injected Tg(lyz:DsRED)/Tg(runx1P2:EGFP) larvae following infection, compared with PBS

controls at 2 dpi.

(B) Expression of cmyb within the AGM of uninjected, PBS control and infected larvae at 2 dpi.

(C)Quantificationofcmyb-expressingcellswithin theAGM(asdefined in schematic) of larvae shown in (B); arrowheadmarks somiteboundary that intersects cloaca.

(D) Quantification of dual-labeled HSPCs (marked by asterisks) within the subaortic space of infected Tg(runx1P2:EGFP)/Tg(kdrl:nls-mCherry) larvae, compared

with PBS controls at 1 and 2 dpi. All views, anterior to left. Numbers represent frequency of embryos or larvae with displayed phenotype.

Scale bar, 50 mm in (A). Abbreviations: DA, dorsal aorta; PCV, posterior cardinal vein; *p < 0.05; **p < 0.01; ***p < 0.001. See also Figure S2.
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(Bertrand et al., 2010; Kissa and Herbomel, 2010). We have

previously shown that subaortic runx1-expressing HSCs directly

emerge from similarly runx1-expressing endothelial cells lining

the ventral DA within compound Tg(runx1P2:EGFP)/Tg(kdrl:nls-

mCherry) embryos (where the kdrl:nls-mCherry transgene marks

endothelial nuclei with red fluorescence; Lamet al., 2010). Due to

experimental limitations it is not possible to confirm whether all

newly emerged progenitors maintain an HSC identity during

their occupation of the subaortic mesenchyme and entry into

the underlying vein. In light of this, we hereafter refer to these

endothelial cell-derived subaortic kdrl+runx1+ blood progenitors

(as marked within compound Tg(runx1P2:EGFP)/Tg(kdrl:nls-

mCherry) larvae) as HSPCs. To confirm the effect of infection

on the HSPC compartment, we quantified the number of dual

fluorescent HSPCs within the subaortic region of infected

Tg(runx1P2:EGFP)/Tg(kdrl:nls-mCherry) larvae, relative to PBS

controls. This revealed an increase in HSPCswithin the subaortic

mesenchyme that could be detected by 1 dpi, immediately
Ce
preceding the detection of lyz-expressing cells (Figure 2D). Of

note, there was no difference in the number of kdrl+runx1+ endo-

thelial cells between PBS control and infected larvae (Figure S2).

This suggests that the increase in HSPC numbers following

infection is not the result of an increase in kdrl+runx1+ endothelial

cell numbers that subsequently bud to produce HSPCs. Infec-

tion-responsive HSPC expansion is most likely the result of

enhanced proliferation of HSPCs within the subaortic mesen-

chyme following their endothelial to HSPC transition.

These results confirm that demand-driven granulopoiesis

involves the infection-responsive expansion of HSPCs that con-

tribute to the neutrophil lineage.

Demand-Driven Granulopoiesis Is Dependent upon
Gcsf/Gcsfr Signaling and the Inflammation-Responsive
Transcription Factor C/ebpb
During infection, myelopoiesis-promoting cytokines are believed

to reach the bonemarrow hematopoietic niche via the circulation
ll Stem Cell 10, 198–209, February 3, 2012 ª2012 Elsevier Inc. 201



Figure 3. Demand-Driven Granulopoiesis Is Dependent upon Gcsf/Gcsfr Signaling

(A) Expression of gcsf within the midbrain and hindbrain of infected larvae (marked by arrows), dorsal views, compared with PBS controls at 1 and 2 dpi.

(B) Expression of gcsfr within the AGM of infected larvae, compared with PBS controls at 1 and 2 dpi.

(C–E) Dual WMISH of gcsf and lyz, and lcp1 and apoeb, respectively, within the midbrain and hindbrain at 2 dpi following infection, with dorsal views shown.

(F) Control MO- and Gcsfr MO-injected Tg(lyz:EGFP)/Tg(gata1:DsRED) larvae following injection of heat-shocked Salmonella (H.S. Sal.), compared with PBS

controls at 2 dpi. Numbers represent frequency of embryos or larvae with displayed phenotype.

Scale bar, 100 mm in (F). See also Figure S3.

Cell Stem Cell

Hematopoietic Stem Cells and Infection
to influence blood progenitor fate. G-CSF and macrophage

colony-stimulating factor (M-CSF/CSF1) are the two predomi-

nant lineage-specific cytokines that drive neutrophil and macro-

phage production, respectively (Kaushansky, 2006; Motoyoshi,

1998). QPCR expression analysis of csf1a, csf1b, and gcsf

transcripts following infection revealed that only gcsf demon-

strated a significant elevation in expression that was coincident

with demand-driven granulopoiesis (Figure S3). Whole-mount

in situ hybridization (WMISH) analysis of gcsf revealed this

expression to be restricted to the infection site (midbrain and

hindbrain) while transcripts for its receptor, gcsfr, were detected

within cells throughout the AGM compartment (Figures 3A and

3B). Given the lack of obvious gcsfr expression within HSPCs

in the AGM region of control larvae, this elevated expression

following infection is most likely a combination of enhanced

expression within an expanded pool of HSPCs. Expression

analysis revealed that all lyz-expressing neutrophils did not

express gcsf, while all gcsf-expressing cells were positive for

the pan-leukocyte marker lcp-1 (Figures 3C and 3D). Further-

more, gcsf-expressing cells were not positive for the microglial
202 Cell Stem Cell 10, 198–209, February 3, 2012 ª2012 Elsevier Inc
marker apolipoprotein Eb (apoeb) (Figure 3E). The lyz�lcp1+

apoeb� phenotype is consistent with these gcsf-expressing cells

being macrophages.

To address the requirement for Gcsf/Gcsfr signaling during

demand-driven granulopoiesis, we infected Gcsfr-depleted

double transgenic Tg(lyz:EGFP)/Tg(gata1:DsRED) larvae and

assessed their ability to replenish neutrophils. Gcsfr-depleted

larvae possessed fewer neutrophils and demonstrated reduced

survival following infection when compared to control MO-

injected siblings (Figure S3). Of note, Gcsfr-depleted larvae

were more susceptible to infection than Runx1-depleted larvae,

despite maintaining similar numbers of neutrophils at the time of

infection. This suggests that the increased susceptibility to

infection following Gcsfr depletion is largely the result of defec-

tive Gcsf/Gcsfr-mediated neutrophil function/maturation rather

than reduced neutrophil numbers. This high susceptibility to

infection following Gcsfr depletion precluded assessment of

subsequent demand-driven granulopoiesis. To circumvent this,

we injected nonlethal heat-shocked Sal-GFP, which, despite

not depleting neutrophil numbers by 1 dpi, could still elicit
.



Figure 4. cebpb Is Expressed within HSPCs in Response to Infection and Is Required for Demand-Driven Granulopoiesis

(A) Expression of cebpb within the AGM of infected larvae, compared with PBS controls at 12 hpi and 2 dpi.

(B) Dual WMISH of cebpb and runx1 within the AGM of infected larvae at 12 hpi.

(C) Dual WMISH of cebpb and lyz within the AGM of infected larvae at 2 dpi.

(D) Control MO- and C/ebpb MO-injected Tg(lyz:EGFP)/Tg(gata1:DsRED) larvae following infection, compared with PBS controls at 2 dpi. Numbers represent

frequency of embryos or larvae with displayed phenotype.

Scale bar, 100 mm in (D). All views, anterior to left. Abbreviations: DA, dorsal aorta; PCV, posterior cardinal vein. See also Figure S4.
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a demand-driven granulopoietic response by 2 dpi, although not

within Gcsfr-depleted larvae (Figure 3F and Figure S3).

These results confirm that Gcsf signaling is necessary for

demand-driven expansion of gcsfr-expressing HSPCs within

the AGM compartment. Of note, given that heat-killed bacteria

maintained the capacity to initiate demand-driven granulo-

poiesis independent of the neutrophil depletion following live

infection, neutrophil apoptosis appears to be dispensable for

demand-driven granulopoiesis.

In mice, G-CSF-dependant demand-driven granulopoiesis

is in part regulated by the downstream transcription factor

C/EBPb (Hirai et al., 2006; Zhang et al., 2010). A function for

zebrafish C/ebpb during hematopoiesis has not been reported.

QPCR analysis of cebpb expression revealed significant in-

creases in expression coincident with the timing of demand-

driven granulopoiesis (Figure S4). At both 12 hr postinfection

(hpi) (prior to the demand-driven production of lyz-expressing

cells) and 2 dpi, cells expressing cebpb were detected within

the AGM following infection (Figure 4A). Expression analysis re-

vealed these earliest cebpb-expressing cells in the AGM to be

runx1+ HSPCs, while later expression also included newly

emerging lyz+ neutrophil-fated progenitors (Figures 4B and 4C).

Flow cytometry quantification of fluorescent neutrophils within

C/ebpb-depleted Tg(lyz:DsRED) embryos and larvae confirmed

that this transcription factor, as in mammals, is dispensable for

maintaining steady-state neutrophil numbers (Figure S4). This

was in contrast to the situation following infection, where

C/ebpb MO-injected larvae were not able to replenish depleted

neutrophil numbers, as demonstrated within double transgenic

Tg(lyz:EGFP)/Tg(gata1:DsRED) larvae (Figure 4D).
Ce
These results strongly suggest that the transcription factor

C/ebpb, although dispensable for steady-state neutrophil pro-

duction, is required within HSPCs and neutrophil-fated progeni-

tors for their proliferation and/or differentiation into neutrophils

during demand-driven granulopoiesis.

Nos2a Is Required for Demand-Driven Granulopoiesis
and the Reactive Expansion of HSPCs following
Infection
Downstream targets of C/EBPb that promote demand-driven

granulopoiesis following infection remain unknown. Predicted

targets would be C/EBPb responsive, demonstrate the potential

to bemodulated following immune stimulation, have the ability to

influence hematopoiesis, and suppress apoptotic signals and/or

enhance cell proliferation. These criteria led us to investigate

a potential role for the cytokine-inducible form of NO (produced

byNOS2/INOS), a well-characterized regulator of diverse inflam-

matory responses (Korhonen et al., 2005). The nos2 gene is

duplicated in zebrafish (nos2a and nos2b). Of these paralogs,

Nos2a has been shown to more closely resemble mammalian

NOS2 with regard to stress-induced properties (Lepiller et al.,

2009). The zebrafish ortholog of Nos1 has been demonstrated

to contribute to steady-state numbers of runx1/cmyb-express-

ing HSPCs within the AGM region, supporting a proliferative

role for constitutive NO during HSPC development (North

et al., 2009).

To first evaluate whether NOS activity was necessary for

infection-responsive expansion of the neutrophil lineage, we ex-

posed infected Tg(lyz:DsRED2) larvae to a number of pan-NOS

and isoform-specific NOS inhibitors from 6 hpi. The pan-NOS
ll Stem Cell 10, 198–209, February 3, 2012 ª2012 Elsevier Inc. 203



Figure 5. Demand-Driven Granulopoiesis and HSPC Expansion Are Dependent upon Nos2a

Relative frequency of infected larvae demonstrating demand-driven granulopoiesis following treatment (from 6 hpi) with the NOS inhibiting drugs L-NAME (A),

ODQ (B), 1400W (C), and S-Methyl-L-thiocitrulline (D), all relative to DMSO control treatment. Numbers represent numbers of larvae in each treatment group. (E)

Expression of nos2a within the AGM of infected larvae, compared with PBS controls at 1 and 2 dpi. (F) Dual WMISH of nos2a and lyz within the AGM of infected

larvae at 2 dpi. (G–I) DAF-FM DA detection of NO within control MO-injected PBS control, control MO-injected infected, and Nos2a MO-injected infected

Tg(lyz:DsRED) larvae, respectively, at 2 dpi. Yellow and red asterisks mark lyz+/NO+ and lyz+/NO� cells, respectively. (J) Percentage of control MO- and Nos2a

MO-injected Tg(lyz:DsRED) infected larvae demonstrating demand-driven granulopoiesis at 2 dpi. (K) Number of cmyb-expressing HSPCs, as detected by

WMISH at 2 dpi, within the AGM compartment (as defined in Figure 2C) following indicated treatments. (L) Quantification of dual-labeled HSPCs within the

subaortic space of 2 dpi Tg(runx1P2:EGFP)/Tg(kdrl:nls-mCherry) larvae following indicated treatments. Numbers represent frequency of embryos or larvae

with displayed phenotype. All views, anterior to left. Scale bar, 50 mm in (F). Abbreviations: DA, dorsal aorta; PCV, posterior cardinal vein; n.s., not significant;

**p < 0.01; ***p < 0.001. See also Figure S5.
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inhibitors L-NAME (Figure 5A) and L-NMMA (Figure S5), as well

as the NO-sensitive guanylyl cyclase inhibitor ODQ (Figure 5B)

and NOS2-specific inhibitor 1400W (Figure 5C), all resulted in

a dose-dependent reduction in larvae demonstrating demand-

driven granulopoiesis. This was in contrast to the nNOS/NOS1-
204 Cell Stem Cell 10, 198–209, February 3, 2012 ª2012 Elsevier Inc
specific inhibitor S-Methyl-L-thiocitrulline, which had no effect

(Figure 5D). A temporal analysis of 1400W treatment demon-

strated that the requirement for NOS2 was comparable with

the timing of demand-driven granulopoiesis (Figure S5). Of

note, treatment of PBS control-injected siblings with all drugs
.
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used, at all doses, resulted in no observable developmental

defects, including steady-state neutrophil production (data not

shown). These results prompted us to evaluate the expression

of nos2a within the AGM compartment following infection.

Presumptive HSPCs expressing nos2a were detected as early

as 1 day following infection (Figure 5E). Expression analysis at

2 dpi revealed that the majority of nos2a-expressing cells were

lyz+ neutrophil-fated progenitors (Figure 5F).

Next we exploited the live imaging potential of the cell-

permeable 4-amino-5-methylamino-20,70-difluororescein diace-

tate (DAF-FM DA) fluorescent NO probe to examine whether

this infection-responsive nos2a expression within the AGM cor-

related with active NO production. Consistent with the expres-

sion analysis, NO was detected within lyz:DsRED-expressing

cells within the AGM compartment, specifically following infec-

tion (Figures 5G and 5H). To confirm a role for Nos2a during

NOproduction and demand-driven granulopoiesis, we assessed

NO production within Nos2a-depleted infected Tg(lyz:DsRED)

larvae and the potential of Nos2a-depleted compound

Tg(lyz:EGFP)/Tg(gata1:DsRED) larvae to replenish depleted neu-

trophil numbers following infection (Figures 5G–5J and Fig-

ure S5). This revealed a requirement for Nos2a during NO pro-

duction and demand-driven granulopoiesis within the AGM

following infection (Figures 5I and 5J and Figure S5). Flow cytom-

etry quantification of fluorescent neutrophils within Nos2a-

depleted Tg(lyz:DsRED) embryos and larvae confirmed that

Nos2a, like C/ebpb, was dispensable for maintaining homeo-

static neutrophil numbers (Figure S5). No significant reduction

in survival was observed within Nos2a-depleted larvae following

infection, suggesting that Nos2a, although required for neutro-

phil replenishment/expansion in response to infection, was not

required to survive the infection doses used in this study (Fig-

ure S5). Given the early expression of both cebpb and nos2a

by HSPCs within the AGM when HSPC numbers within this

region are expanding, we investigated whether Nos2a was

required for HSPC expansion following infection. This analysis

revealed that the infection-responsive increases of both cmyb-

and runx1P2:EGFP/kdrl:nsl-mCherry-expressing HSPCs within

the subaortic mesenchyme are Nos2a-dependent (Figures 5K

and 5L). These results confirm a role for Nos2a-generated NO

during infection-responsive expansion of subaortic HSPCs.

Nos2a Functions Downstream of C/ebpb during
Demand-Driven Granulopoiesis
To establish a genetic link between C/ebpb and Nos2a, we

assessed the expression of each in the absence of the other,

within the AGM compartment following infection (Figures 6A

and 6B). This revealed a decrease in larvae expressing nos2a

within the AGM following C/ebpb-depletion while most infected

Nos2a-depleted larvae maintained a reduced population of

cebpb-expressing cells (Figures 6A and 6B). Following infection,

the abundance of cebpb+ cells within the AGM of Nos2a-

depleted larvae at 2 dpi was similar to that detected at 1 dpi (Fig-

ure S6). This suggests that, in the absence of Nos2a, cebpb-

expressing HSPCs do not expand in number. To further support

the positioning of C/ebpb upstream of Nos2a, we first examined

the potential of ectopic cebpb to drive nos2a expression.

Injection of cebpb mRNA into one-cell stage zebrafish embryos

resulted in a proportion of precirculation embryos possessing
Ce
ectopic nos2a expression on the yolk surface (Figure 6C).

Repeating this experiment within Tg(lyz:EGFP) embryos followed

by triple fluorescent labeling to detect injected cebpb (Alexa

488), nos2a (Alexa 555), and lyz:EGFP (Alexa 633) revealed

that this ectopic nos2a expression was only observed within

lyz:EGFP-marked cells overexpressing cebpb (Figure 6D). Of

note, neither cebpb nor nos2a expression was detected on the

yolk of 22 hpf uninjected siblings (data not shown). In zebrafish,

early myeloid cells that populate the precirculation yolk surface

are derived from anterior lateral plate mesoderm and are

believed to possess an early myeloid progenitor cell phenotype

with neutrophil and macrophage potential (Le Guyader et al.,

2008). The number of these cells, as detected by lyz:EGFP

expression, was significantly expanded following forced cebpb

expression in a Nos2a-dependent manner (Figures 6E–6H).

These results are consistent with C/ebpb driving nos2a

expression within early primitive myeloid cells where it promotes

their proliferation/expansion. Forcing expression of cebpbwithin

the AGM region to assess a similar ability to drive nos2a expres-

sion and Nos2a-dependent HSPC proliferation/expansion within

this definitive blood compartment was not technically feasible.

Despite this, the dependence on C/ebpb for nos2a expression

within HSPCs in this region, the requirement of Nos2a for

HSPC expansion, and the need for both during neutrophil pro-

genitor expansion following infection supports a conserved rela-

tionship within the AGM compartment.

DISCUSSION

Using a zebrafish model of demand-driven granulopoiesis to

explore the reactive capacity of the blood stem cell compart-

ment to inflammatory stress, we reveal that C/ebpb-dependent

Nos2a-generated NO is necessary for HSPC and neutrophil-

fated progenitor expansion in response to infection. We propose

a model whereby elevated serum Gcsf, produced by macro-

phages at the infection site, stimulates Gcsf-responsive AGM-

resident HSPCs to express the transcription factor C/ebpb.

C/ebpb then drives Nos2a expression, which supports HSPC

proliferation/expansion (Figure 7). Given that we show steady-

state neutrophil production occurs normally in the absence of

endogenous NO, suggesting that transcriptional control of neu-

trophil commitment is independent of NO, we believe Nos2a-

generated NO is required for C/ebpb-driven proliferation of

HSPCs but dispensible for their neutrophil commitment.

Live imagingwithin transgenic reporter lines possessing differ-

entially fluorescent endothelial and blood progenitor lineages

has confirmed that nascent HSPCs emerge directly from endo-

thelial cells lining the DA (Bertrand et al., 2010; Kissa and Herbo-

mel, 2010; Lam et al., 2010). These endothelially derived blood

stem cells, specified within the AGM compartment, are believed

to provide the life-long supply of HSPCs (Bertrand et al., 2010).

Using live imaging of infected Tg(runx1P2:EGFP)/Tg(kdrl:nls-

mCherry) larvae, we demonstrate that Nos2a is required for the

infection-responsive expansion of this subaortic cell population

within the AGM region. We also show that nos2a continues to

be expressed within an expanding pool of neutrophil-fated pro-

genitors and can drive the expansion of early primitive myeloid

progenitors. Our results suggest that following infection, the

subaortic AGM region is populated with enhanced numbers of
ll Stem Cell 10, 198–209, February 3, 2012 ª2012 Elsevier Inc. 205



Figure 6. Nos2a Functions Downstream of C/ebpb during Demand-Driven Granulopoiesis

(A) Expression of nos2a within the AGM of control MO- and C/ebpb MO-injected larvae following infection, compared with PBS controls at 2 dpi.

(B) Expression of cebpb within the AGM of control MO- and Nos2a MO-injected larvae following infection, compared with PBS controls at 2 dpi.

(C) Expression of nos2a at 22 hpf, following injection of 50 pg cebpb mRNA.

(D) Dual WMISH of cebpb and nos2a and immunofluorescence detection of lyz:EGFP within a Tg(lyz:EGFP) embryo at 22 hpf, following injection of 50 pg cebpb

mRNA.

(E–G) lyz:EGFP-expressing myeloid progenitors on the yolk of noninjected, cebpbmRNA-injected, and cebpbmRNA/Nos2a MO-injected Tg(lyz:EGFP) embryos

at 22 hpf, respectively.

(H) Quantification of lyz:EGFP-expressing cells on the yolk of embryos in (E)–(G). Numbers represent frequency of embryos or larvae with displayed phenotype.

All views, anterior to left. Scale bar, 10 mm in (D). Abbreviations: n.s., not significant; ***p < 0.001. See also Figure S6.
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HSPCs that are becoming progressively restricted toward the

neutrophil lineage. We believe that Nos2a acts at the level of

the HSPC and their neutrophil-fated progenitor progeny to

support proliferation in response to infection.

The attributes of the zebrafish we have exploited in this study,

in particular its genetic tractability and optical transparency,

restrict the use of this system to the embryonic and early larval

stages of development. With this in mind we have used the

zebrafish larval hematopoietic system as a surrogate for that in

the adult. Our investigation into the larval hematopoietic re-

sponse to infection has revealed a high degree of conserva-

tion with that reported within the mammalian bone marrow, in

particular HSPC expansion, enhanced commitment toward the

neutrophil lineage, and dependence on G-CSF signaling and

C/EBPb. Investigating HSPC development in embryonic zebra-

fish has resulted in unique insights into blood stem cell homeo-

stasis that have been successfully translated to the adult

mammalian blood system (North et al., 2007). Examining defini-

tive hematopoiesis in embryonic and larval zebrafish has high-

lighted that many core signaling pathways and transcriptional

networks that guide the development of the blood system also
206 Cell Stem Cell 10, 198–209, February 3, 2012 ª2012 Elsevier Inc
perform similar roles within the mammalian bone marrow

to maintain blood cell homeostasis. In light of this, and given

the conserved positive contribution of constitutive NO signaling

during HSPC development within zebrafish andmice, we believe

it is likely that the role of infection-responsive NO in promoting

HSPC expansion we describe here will translate to the bone

marrow compartment (Adamo et al., 2009; North et al., 2007).

During demand-driven granulopoiesis the transcription factor

C/EBPb functions downstream of G-CSF to couple differentia-

tion and proliferation of neutrophil progenitors (Akagi et al.,

2008; Hirai et al., 2006; Zhang et al., 2010). This is in contrast

to steady-state neutrophil production where there is a model of

mutual exclusion between proliferation and differentiation.

We further resolve how the hematopoietic system responds

to infection stress by demonstrating cebpb expression, not

only within neutrophil-fated precursors, but also within runx1+

HSPCs where it promotes proliferation through a Nos2a-

dependent mechanism. Studies have demonstrated a role for

the trans-acting C/EBPb in driving NOS2 expression by direct

binding to cis-acting elements in its promoter (Guo et al., 2003;

Teng et al., 2002). We show that ectopic delivery of cebpb can
.



Figure 7. Proposed Model Illustrating the Reactive

Capacity of the Zebrafish Blood System to Inflam-

matory Stress

In response to bacterial challenge, neutrophils infiltrate the

infection foci to help clear bacteria before undergoing

apoptosis. Macrophages then arrive to remove neutrophil

debris and express the granulopoiesis-promoting cyto-

kine Gcsf (1). Gcsf reaches the AGM compartment via

the circulation to support the proliferation/expansion of

HSPCs and neutrophil-fated progenitors by promoting

C/ebpb-dependent nos2a expression (2).
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drive nos2a expression within zebrafish embryos. Analysis of the

promoter region immediately upstream of the zebrafish nos2a

transcription start site revealed a number of C/EBPb consensus

motifs (data not shown).

NO is a pleiotropic biomodulator in a number of systems,

including the hematopoietic system. Positive and negative roles

for NO during cell proliferation and steady-state blood develop-

ment have been reported (Guthrie et al., 2005; Krasnov et al.,

2008; Krsti�c et al., 2009; Michurina et al., 2004; North et al.,

2009; Villalobo, 2006). In zebrafish, blood-flow-responsive

nos1 (nnos/enos)-derived NO has been shown to contribute to

runx1+cmyb+ HSPC development within the AGM region such

that NO-donors enhance, while NO-inhibitors (and inhibitors

of downstream components of NO signaling, such as ODQ)

deplete, HSPC numbers (North et al., 2009). In mice, intrauterine

delivery of the pan-NOS-inhibitor L-NAME blocks hematopoietic

cluster formation within the AGM, strongly arguing for a con-

served role for NO signaling as a positive regulator of blood

stem cell development. We propose a role for infection-

responsive NO, generated by Nos2a, during expansion of zebra-

fish HSPCs in response to inflammatory stress. Given the

expression of nos2a within HSPCs in the AGM from 1 dpi, this

source of NO likely influences neighboring blood progenitors in

a paracrine fashion. We were unable to confirm these early

nos2a-expressing cells as HSPCs by dual staining with HSPC

markers due to technical limitations. However, given that these

nos2a-expressing cells occupy the AGM, prior to the emergence

of lyz-expressing neutrophil-fated progenitors at a time when

HSPC numbers are expanding in a Nos2a-dependent manner,

suggests that they are HSPCs. Despite studies examining

the role of NOS2 during the immune response, a role during

demand-driven granulopoiesis or infection-responsive HSPC

expansion has not been described.

This study proposes a role for Nos2a-generated NO, down-

stream of C/ebpb, in supporting HSPC proliferation/expansion
Cell Stem Cell 10, 19
following infection. To date, the ability to expand

HSPCs ex vivo remains limited (Dahlberg et al.,

2011). As such, identifying novel mechanisms

that influence HSPC proliferative capacity is an

area of intense interest heightened by their

therapeutic relevance to both malignant and

nonmalignant diseases. Additional studies are

required to determine whether manipulating

C/EBPb and/or NOS2 activity influences the

capacity of mammalian HSPCs and whether
this newly identified pathway can be targeted for therapeutic

benefit.

EXPERIMENTAL PROCEDURES

Refer to the Supplemental Information for fully detailed experimental

procedures.

Zebrafish Maintenance

Zebrafish embryos obtained from natural spawnings were raised at 28�C in E3

Medium (Westerfield, 2000) and were developmentally staged as described

(Kimmel et al., 1995). Transgenic reporter lines used in this study are summa-

rized in Table S1. Research was conducted with approval from The University

of Auckland Animal Ethics Committee.

QPCR

QPCR was performed with Platinum SYBR Green qPCR SuperMix-UDG with

ROX (Invitrogen) using an ABI PRISM7900HT Fast sequence detection system

(Applied Biosystems) essentially as described (Oehlers et al., 2010). Gene-

specific oligonucleotides were designed using Primer Express software

(Table S2).

Statistical Analysis

Statistical analyses were performed using Prism 5.0 (GraphPad Software,

Inc.). Statistical significance was assessed using unpaired, two-tailed t tests,

and all data was presented in scatter plots with means and standard

deviations.

WMISH

WMISHswere performed as described (Jowett and Lettice, 1994). Fluorescent

in situ hybridization was adapted from Clay and Ramakrishnan (2005).

RT-PCR

Total RNAs were extracted from embryos and larvae using TRIzol reagent

(Invitrogen) as per the manufacturer’s instructions. cDNAs were then gener-

ated using Superscript III reverse transcriptase (Invitrogen). These cDNAs

were used to generate gene-specific amplicons using the primer pairs listed

in Table S2 (all primer pairs were designed to span at least 1 intron to control

for contaminating genomic DNA).
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Cell Stem Cell

Hematopoietic Stem Cells and Infection
MO Injection

MOs (Gene Tools, Philomath, OR) were resuspended and injected as

described (Nasevicius and Ekker, 2000). Efficacious doses for all MOs were

determined empirically. RT-PCR was used to determine MO specificity where

splice-blocking MOs were used (see Table S3 for oligonucleotide sequences

and doses).

Chemical Treatments

Unless otherwise stated compounds were resuspended according to the

manufacturer’s instructions and diluted to the indicated working concentra-

tions such that the final DMSO concentration was 1%. Full details of the chem-

icals used, their targets, and manufacturer’s and working concentrations are

provided in Table S4.

Infection of Zebrafish Embryos and Larvae

Embryos and larvae were infected at the indicated ages with either GFP-

labeled or nonlabeled Salmonella enterica serovar Typhimurium (Hall et al.,

2007). Bacteria were delivered into the hindbrain ventricle of anaesthetized

larvae, typically at 50 hpf. For a detailed description of bacteria culture condi-

tions, injection procedure and actual cfu dose calculation, see Supplemental

Experimental Procedures.

Capped RNA Synthesis

Synthetic capped RNA was synthesized using the mMESSAGE mMACHINE

SP6 kit (Ambion) as per the manufacturer’s instructions.

DAF-FM DA Staining of Larvae

The NO-specific fluorescent dye DAF-FM DA (Molecular Probes, Invitrogen)

was used to detect endogenous NO as previously described (Lepiller et al.,

2007).

Immunofluorescence

Immunofluorescence detection of fluorescent reporters was performed essen-

tially as described (Hall et al., 2009a). For detection of EGFP, a chicken anti-

GFP (Abcam) primary and goat anti-chicken Alexa Fluor 488-conjugated

secondary antibody (Invitrogen) or a rabbit anti-GFP primary (Invitrogen) and

goat anti-rabbit Alexa Fluor 633-conjugated secondary antibody (Invitrogen)

were used.

Flow Cytometry

Flow cytometry was performed as previously described (Hall et al., 2009a).

Confocal Imaging

Live embryos and larvae were mounted for confocal imaging as previously

described (Hall et al., 2009b). Images collected by confocal microscopy

were processed and analyzed using Volocity 5.5 (Perkin Elmer).
SUPPLEMENTAL INFORMATION

Supplemental Information for this article includes Figures S1–S6, Tables

S1–S4, and Supplemental Experimental Procedures and can be found with

this article online at doi:10.1016/j.stem.2012.01.007.
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