50 research outputs found

    Pentoxifylline associated to hypertonic saline solution attenuates inflammatory process and apoptosis after intestinal ischemia/reperfusion in rats

    Get PDF
    PURPOSE:To evaluate intestinal inflammatory and apoptotic processes after intestinal ischemia/reperfusion injury, modulated by pentoxifylline and hypertonic saline.METHODS:It was allocated into four groups (n=6), 24 male Wistar rats (200 to 250g) and submitted to intestinal ischemia for 40 min and reperfusion for 80 min: IR (did not receive any treatment); HS group (Hypertonic Saline, 4ml/kg-IV); PTX group (Pentoxifylline, 30mg/kg-IV); HS+PTX group (Hypertonic Saline and Pentoxifylline). All animals were heparinized (100U/kg). At the end of reperfusion, ileal fragments were removed and stained on hematoxylin-eosin and histochemical studies for COX-2, Bcl-2 and cleaved caspase-3.RESULTS:The values of sO2 were higher on treated groups at 40 minutes of reperfusion (p=0.0081) and 80 minutes of reperfusion (p=0.0072). Serum lactate values were lower on treated groups after 40 minutes of reperfusion (p=0.0003) and 80 minutes of reperfusion (p=0.0098). Morphologic tissue injuries showed higher grades on IR group versus other groups: HS (p=0.0006), PTX (p=0.0433) and HS+PTX (p=0.0040). The histochemical study showed lesser expression of COX-2 (p=0.0015) and Bcl-2 (p=0.0012) on HS+PTX group. A lower expression of cleaved caspase-3 was demonstrated in PTX (p=0.0090; PTXvsIR).CONCLUSION:The combined use of pentoxifylline and hypertonic saline offers best results on inflammatory and apoptotic inhibitory aspects after intestinal ischemia/reperfusion.São Paulo University Medical SchoolUSP Medical SchoolFederal University of São Paulo Medical SchoolUSP School of MedicineUSP School of Medicine Department of SurgeryUSP Medical School Department of SurgeryUNIFESP, Medical SchoolSciEL

    Arrival Directions of Cosmic Rays above 32 EeV from Phase One of the Pierre Auger Observatory

    Get PDF
    A promising energy range to look for angular correlations between cosmic rays of extragalactic origin and their sources is at the highest energies, above a few tens of EeV (1 EeV equivalent to 10^(18) eV). Despite the flux of these particles being extremely low, the area of similar to 3000 km^(2) covered at the Pierre Auger Observatory, and the 17 yr data-taking period of the Phase 1 of its operations, have enabled us to measure the arrival directions of more than 2600 ultra-high-energy cosmic rays above 32 EeV. We publish this data set, the largest available at such energies from an integrated exposure of 122,000 km^(2) sr yr, and search it for anisotropies over the 3.4 pi steradians covered with the Observatory. Evidence for a deviation in excess of isotropy at intermediate angular scales, with similar to 15 degrees Gaussian spread or similar to 25 degrees top-hat radius, is obtained at the 4 sigma significance level for cosmic-ray energies above similar to 40 EeV

    Search for Ultra-high-energy Photons from Gravitational Wave Sources with the Pierre Auger Observatory

    Get PDF
    A search for time-directional coincidences of ultra-high-energy (UHE) photons above 10 EeV with gravitational wave (GW) events from the LIGO/Virgo runs O1 to O3 is conducted with the Pierre Auger Observatory. Due to the distinctive properties of photon interactions and to the background expected from hadronic showers, a subset of the most interesting GW events is selected based on their localization quality and distance. Time periods of 1000 s around and 1 day after the GW events are analyzed. No coincidences are observed. Upper limits on the UHE photon fluence from a GW event are derived that are typically at & SIM;7 MeV cm(-2) (time period 1000 s) and & SIM;35 MeV cm(-2) (time period 1 day). Due to the proximity of the binary neutron star merger GW170817, the energy of the source transferred into UHE photons above 40 EeV is constrained to be less than 20% of its total GW energy. These are the first limits on UHE photons from GW sources

    Searches for Ultra-High-Energy Photons at the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory, which is the largest air-shower experiment in the world, offers unprecedented exposure to neutral particles at the highest energies. Since the start of data collection more than 18 years ago, various searches for ultra-high-energy (UHE, E greater than or similar to 10^(17) eV) photons have been performed, either for a diffuse flux of UHE photons, for point sources of UHE photons or for UHE photons associated with transient events such as gravitational wave events. In the present paper, we summarize these searches and review the current results obtained using the wealth of data collected by the Pierre Auger Observatory

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    High-field Faraday rotation in II-VI-based semimagnetic semiconductors

    No full text
    The effects of d-d exchange interaction have been studied by measuring high-field Faraday rotation in II-VI-based semimagnetic semiconductors. For Cd1-xMnxTe crystals with x = 0.43 and at room temperature a saturation in magnetic field dependence of the Faraday rotation has been observed. In the case of low temperature (T = 4.2 K) and low Mn content (x = 0.05), two steps for Cd1-xMnxTe and one step for Cd1-xMnxSe have been found on this dependence. These steps are interpreted by the nearest-neighbour cluster model. The evaluated exchange constant J(NN) is in agreement with direct magnetization measurements. Peculiarity of high-field Faraday rotation in Fe-and Co-based semimagnetic semiconductors has been discussed. (C) 1998 Elsevier Science B.V. All rights reserved
    corecore