10 research outputs found

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    The Canagliflozin and Renal Endpoints in Diabetes with Established Nephropathy Clinical Evaluation (CREDENCE) Study Rationale, Design, and Baseline Characteristics

    No full text
    Background: People with diabetes and kidney disease have a high risk of cardiovascular events and progression of kidney disease. Sodium glucose co-transporter 2 inhibitors lower plasma glucose by reducing the uptake of filtered glucose in the kidney tubule, leading to increased urinary glucose excretion. They have been repeatedly shown to induce modest natriuresis and reduce HbA1c, blood pressure, weight, and albuminuria in patients with type 2 diabetes. However, the effects of these agents on kidney and cardiovascular events have not been extensively studied in patients with type 2 diabetes and established kidney disease. Methods: The Canagliflozin and Renal Endpoints in Diabetes with Established Nephropathy Clinical Evaluation (CREDENCE) trial aims to compare the efficacy and safety of canagliflozin ­versus placebo at preventing clinically important kidney and cardiovascular outcomes in patients with diabetes and established kidney disease. CREDENCE is a randomized, double-blind, event-driven, placebo-controlled trial set in in 34 countries with a projected duration of â\u88¼5.5 years and enrolling 4,401 adults with type 2 diabetes, estimated glomerular filtration rate â\u89¥30 to 300 to â\u89¤5,000 mg/g). The study has 90% power to detect a 20% reduction in the risk of the primary outcome (α = 0.05), the composite of end-stage kidney disease, doubling of serum creatinine, and renal or cardiovascular death. Conclusion: CREDENCE will provide definitive evidence about the effects of canagliflozin on renal (and cardiovascular) outcomes in patients with type 2 diabetes and established kidney disease. Trial Registration: EudraCT number: 2013-004494-28; ClinicalTrials.gov identifier: NCT02065791
    corecore