249 research outputs found

    Mapping of a new locus for congenital anomalies of the kidney and urinary tract on chromosome 8q24

    Get PDF
    Background. Congenital anomalies of the kidney and urinary tract (CAKUT) account for the majority of end-stage renal disease in children (50%). Previous studies have mapped autosomal dominant loci for CAKUT. We here report a genome-wide search for linkage in a large pedigree of Somalian descent containing eight affected individuals with a non-syndromic form of CAKUT. Methods. Clinical data and blood samples were obtained from a Somalian family with eight individuals with CAKUT including high-grade vesicoureteral reflux and unilateral renal agenesis. Total genome search for linkage was performed using a 50K SNP Affymetric DNA microarray. As neither parent is affected, the results of the SNP array were analysed under recessive models of inheritance, with and without the assumption of consanguinity. Results. Using the non-consanguineous recessive model, a new gene locus (CAKUT1) for CAKUT was mapped to chromosome 8q24 with a significant maximum parametric Logarithm of the ODDs (LOD) score (LODmax) of 4.2. Recombinations were observed in two patients defining a critical genetic interval of 2.5 Mb physical distance flanked by markers SNP_A-1740062 and SNP_A-1653225. Conclusion. We have thus identified a new non-syndromic recessive gene locus for CAKUT (CAKUT1) on chromosome 8q24. The identification of the disease-causing gene will provide further insights into the pathogenesis of urinary tract malformations and mechanisms of renal developmen

    Duplications at 19q13.33 in patients with neurodevelopmental disorders

    Get PDF
    Objective After the recent publication of the first patients with disease-associated missense variants in the GRIN2D gene, we evaluate the effect of copy number variants (CNVs) overlapping this gene toward the presentation of neurodevelopmental disorders (NDDs). Methods We exploredClinVar (number ofCNVs = 50,794) andDECIPHER (number ofCNVs = 28,085) clinical databases of genomic variations for patients with copy number changes overlapping the GRIN2D gene at the 19q13.33 locus and evaluated their respective phenotype alongside their frequency, gene content, and expression, with publicly available reference databases. Results We identified 11 patients with microduplications at the 19q13.33 locus. The majority of CNVs arose de novo, and comparable CNVs are not present in control databases. All patients were reported to have NDDs and dysmorphic features as the most common clinical phenotype (N = 8/11), followed by seizures (N = 6/11) and intellectual disability (N = 5/11). All duplications shared a consensus region of 405 kb overlapping 13 genes. After screening for duplication tolerance in control populations, positive gene brain expression, and gene dosage sensitivity analysis, we highlight 4 genes for future evaluation: CARD8, C19orf68, KDELR1, and GRIN2D, which are promising candidates for disease causality. Furthermore, investigation of the literature especially supports GRIN2D as the best candidate gene. Conclusions Our study presents dup19q13.33 as a novel duplication syndrome locus associated with NDDs. CARD8, C19orf68, KDELR1, and GRIN2D are promising candidates for functional follow-up.Peer reviewe

    Induced pluripotent stem cell-derived neuronal cells from a sporadic Alzheimer’s disease donor as a model for investigating AD-associated gene regulatory networks

    Get PDF
    Background Alzheimer’s disease (AD) is a complex, irreversible neurodegenerative disorder. At present there are neither reliable markers to diagnose AD at an early stage nor therapy. To investigate underlying disease mechanisms, induced pluripotent stem cells (iPSCs) allow the generation of patient-derived neuronal cells in a dish. Results In this study, employing iPS technology, we derived and characterized iPSCs from dermal fibroblasts of an 82-year-old female patient affected by sporadic AD. The AD-iPSCs were differentiated into neuronal cells, in order to generate disease-specific protein association networks modeling the molecular pathology on the transcriptome level of AD, to analyse the reflection of the disease phenotype in gene expression in AD-iPS neuronal cells, in particular in the ubiquitin- proteasome system (UPS), and to address expression of typical AD proteins. We detected the expression of p-tau and GSK3B, a physiological kinase of tau, in neuronal cells derived from AD-iPSCs. Treatment of neuronal cells differentiated from AD-iPSCs with an inhibitor of γ-secretase resulted in the down-regulation of p-tau. Transcriptome analysis of AD-iPS derived neuronal cells revealed significant changes in the expression of genes associated with AD and with the constitutive as well as the inducible subunits of the proteasome complex. The neuronal cells expressed numerous genes associated with sub-regions within the brain thus suggesting the usefulness of our in- vitro model. Moreover, an AD-related protein interaction network composed of APP and GSK3B among others could be generated using neuronal cells differentiated from two AD-iPS cell lines. Conclusions Our study demonstrates how an iPSC-based model system could represent (i) a tool to study the underlying molecular basis of sporadic AD, (ii) a platform for drug screening and toxicology studies which might unveil novel therapeutic avenues for this debilitating neuronal disorder

    Evaluation of Presumably Disease Causing SCN1A Variants in a Cohort of Common Epilepsy Syndromes

    Get PDF
    A. Palotie on työryhmän jäsen.Objective The SCN1A gene, coding for the voltage-gated Na+ channel alpha subunit NaV1.1, is the clinically most relevant epilepsy gene. With the advent of high-throughput next-generation sequencing, clinical laboratories are generating an ever-increasing catalogue of SCN1A variants. Variants are more likely to be classified as pathogenic if they have already been identified previously in a patient with epilepsy. Here, we critically re-evaluate the pathogenicity of this class of variants in a cohort of patients with common epilepsy syndromes and subsequently ask whether a significant fraction of benign variants have been misclassified as pathogenic. Methods We screened a discovery cohort of 448 patients with a broad range of common genetic epilepsies and 734 controls for previously reported SCN1A mutations that were assumed to be disease causing. We re-evaluated the evidence for pathogenicity of the identified variants using in silico predictions, segregation, original reports, available functional data and assessment of allele frequencies in healthy individuals as well as in a follow up cohort of 777 patients. Results and Interpretation We identified 8 known missense mutations, previously reported as pathogenic, in a total of 17 unrelated epilepsy patients (17/448; 3.80%). Our re-evaluation indicates that 7 out of these 8 variants (p.R27T; p.R28C; p.R542Q; p.R604H; p.T1250M; p.E1308D; p.R1928G; NP_001159435.1) are not pathogenic. Only the p. T1174S mutation may be considered as a genetic risk factor for epilepsy of small effect size based on the enrichment in patients (P = 6.60 x 10(-4); OR = 0.32, fishers exact test), previous functional studies but incomplete penetrance. Thus, incorporation of previous studies in genetic counseling of SCN1A sequencing results is challenging and may produce incorrect conclusions.Peer reviewe

    Integrative and comparative genomic analyses identify clinically relevant pulmonary carcinoid groups and unveil the supra-carcinoids

    Get PDF
    International audienceThe worldwide incidence of pulmonary carcinoids is increasing, but little is known about their molecular characteristics. Through machine learning and multi-omics factor analysis, we compare and contrast the genomic profiles of 116 pulmonary carcinoids (including 35 atypical), 75 large-cell neuroendocrine carcinomas (LCNEC), and 66 small-cell lung cancers. Here we report that the integrative analyses on 257 lung neuroendocrine neoplasms stratify atypical carcinoids into two prognostic groups with a 10-year overall survival of 88% and 27%, respectively. We identify therapeutically relevant molecular groups of pulmonary car-cinoids, suggesting DLL3 and the immune system as candidate therapeutic targets; we confirm the value of OTP expression levels for the prognosis and diagnosis of these diseases, and we unveil the group of supra-carcinoids. This group comprises samples with carcinoid-like morphology yet the molecular and clinical features of the deadly LCNEC, further supporting the previously proposed molecular link between the low-and high-grade lung neuroendocrine neoplasms

    Genome-wide mega-analysis identifies 16 loci and highlights diverse biological mechanisms in the common epilepsies

    Get PDF
    The epilepsies affect around 65 million people worldwide and have a substantial missing heritability component. We report a genome-wide mega-analysis involving 15,212 individuals with epilepsy and 29,677 controls, which reveals 16 genome-wide significant loci, of which 11 are novel. Using various prioritization criteria, we pinpoint the 21 most likely epilepsy genes at these loci, with the majority in genetic generalized epilepsies. These genes have diverse biological functions, including coding for ion-channel subunits, transcription factors and a vitamin-B6 metabolism enzyme. Converging evidence shows that the common variants associated with epilepsy play a role in epigenetic regulation of gene expression in the brain. The results show an enrichment for monogenic epilepsy genes as well as known targets of antiepileptic drugs. Using SNP-based heritability analyses we disentangle both the unique and overlapping genetic basis to seven different epilepsy subtypes. Together, these findings provide leads for epilepsy therapies based on underlying pathophysiology

    Search for lepton-flavour-violating decays of the Higgs boson

    Get PDF
    Peer reviewe

    Implications of an open, extensible, and distributed hypermedia information system architecture for interprocess communication subsystem design

    No full text
    Due to the character of the original source materials and the nature of batch digitization, quality control issues may be present in this document. Please report any quality issues you encounter to [email protected], referencing the URI of the item.Includes bibliographical references.The properties of openness and extensibility have been characterized as necessary for advanced hypermedia system architectures. The hypothesis in this work was that the design of the interprocess communication subsystem underlying a hypermedia system could promote these characteristics. A derivation of the stated requirements for hypermedia system architectures was constructed. In addition to the result of deriving the need for openness and extensibility, another characteristic, dynamic application process modification, was shown to be a (pragmatic) necessity. These characteristics were grouped under a new term, pleosis. The research presented has two main implications for the field of hypermedia systems. Firstly, derivations of the pragmatic necessity of the various aspects of pleosis confirm empirically observed assertions. Namely, it was shown that openness and extensibility are necessary in any complete information system. It was also shown that dynamic process modification was as important in an information system as openness and extensibility. Secondly, it was shown that the design and implementation of an interprocess communication subsystem has critical implications for the supersystem into which it is integrated. Namely, if the interprocess communication subsystem does not support dynamic addition of protocols and media definitions as well as dynamic process modification, the supersystem itself cannot be complete with respect to information system services rendered. This aspect of hypermedia system architecture design has received little attention in the field to this point
    corecore