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Abstract
Background. Congenital anomalies of the kidney and uri-
nary tract (CAKUT) account for the majority of end-stage
renal disease in children (50%). Previous studies have
mapped autosomal dominant loci for CAKUT. We here re-
port a genome-wide search for linkage in a large pedigree
of Somalian descent containing eight affected individuals
with a non-syndromic form of CAKUT.

Methods. Clinical data and blood samples were obtained
from a Somalian family with eight individuals with CA-
KUT including high-grade vesicoureteral reflux and unilat-
eral renal agenesis. Total genome search for linkage was
performed using a 50K SNP Affymetric DNA microarray.
As neither parent is affected, the results of the SNP array
were analysed under recessive models of inheritance, with
and without the assumption of consanguinity.

1496 S. Ashraf et al.

© The Author 2009. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
For Permissions, please e-mail: journals.permissions@oxfordjournals.org



Results. Using the non-consanguineous recessive model, a
new gene locus (CAKUT1) for CAKUT was mapped to
chromosome 8q24 with a significant maximum parametric
Logarithm of the ODDs (LOD) score (LODmax) of 4.2. Re-
combinations were observed in two patients defining a crit-
ical genetic interval of 2.5 Mb physical distance flanked by
markers SNP_A-1740062 and SNP_A-1653225.
Conclusion.We have thus identified a new non-syndromic
recessive gene locus for CAKUT (CAKUT1) on chromo-
some 8q24. The identification of the disease-causing gene
will provide further insights into the pathogenesis of urinary
tract malformations and mechanisms of renal development.

Keywords: congenital anomalies of the kidney and urinary tract
(CAKUT); kidney development; total genome search for linkage;
ureteropelvic junction obstruction; vesicoureteral reflux

Introduction

Congenital anomalies of the kidney and urinary tract (CA-
KUT) occur in as many as 0.5% of all pregnancies and
cover a wide range of structural and functional malforma-
tions that result from a defect in the development of the
kidney and urinary tract [1,2]. CAKUT phenotypes in-
clude renal agenesis, ureteropelvic junction obstruction,
prevesical stenosis, megaureter [3] and vesicoureteral re-
flux (VUR). They represent the most common cause for
end-stage kidney disease (ESKD) in infants and children
and account for ~50% of cases [4,5]. Urinary tract abnor-
malities occur in about three to six per 1000 live births.
CAKUT can be inherited in an autosomal dominant, auto-
somal recessive or X-linked manner. In the dominant
forms of CAKUT, there may be incomplete penetrance
(skipping of a generation) or variable expressivity (varying
severity and extent of abnormalities) [4]. As demonstrated
in animal models, this phenotype variability, which ranges
from VUR to renal agenesis, occurs on the basis of sto-
chastic spatiotemporal differences during embryogenesis,
when the ureteric bud grows out to meet and induce the
metamorphogenic mesenchyme [6]. Dominant CAKUT
may occur with isolated genitourinary involvement (non-
syndromic CAKUT) or as part of over 200 multiorgan
malformation syndromes that affect the central nervous,
cardiovascular and skeletal systems (syndromic CAKUT).
The overall incidence of CAKUT is difficult to estimate,
because many cases are not diagnosed as they may appear
non- or oligosymptomatic.

Mutations in renal developmental genes have been dem-
onstrated in patients with various forms of CAKUT such
as TCF2 (also called HNF1β) mutations in renal cysts and
diabetes syndrome (RCAD) associated with maturity-onset
diabetes of the young type 5 [7–9], EYA1, SIX1 and SIX5
mutations in branchio-oto-renal (BOR) syndrome [10–13],
PAX2 mutations in renal-coloboma syndrome [14,15],
KAL1 mutations in Kallmann syndrome [16,17] and muta-
tions in SALL1 in patients with Townes–Brocks syndrome
(TBS) [18,19]. Recently, TCF2 mutations were identified
in 25 of 80 children with renal hypodysplasia typically
with cortical microcysts [20].

Previous studies have also suggested autosomal dominant
loci for urinary tract malformation on chromosomes 1p13
[21], 6p21 [22–24], 19q13 [25], 10q26 [26] and 13q33–34
[27]. Mutations in angiotensin I-converting enzyme (ACE),
angiotensin type-2 receptor (AT2R) [28] and FOXC1 [29]
genes have been associated with an increased incidence of
CAKUT. Also, mutations in Uroplakin IIIa (UPIII) are
now known to be a rare cause of renal hypodysplasia
(RHD) in humans [30]. In 2007, Lu et al., [31] illustrated that
mutations in the ROBO2 gene can contribute to the patho-
genesis of VUR/CAKUT in a small proportion of families.
Furthermore, dominant mutations with incomplete pene-
trance have been demonstrated inBMP4 and SIX2 in patients
with RHD. The roles of SIX2 andBMP4have been implicat-
ed in the development of renal cysts, and defects in these pro-
teins are shown to affect kidney development at multiple
stages, leading to CAKUT [32]. Reduced BMP4 abundance
in Gata2 hypomorphic mutant mice has also been shown to
result in uropathies resembling human CAKUT [33].

Recently, Weber et al. performed a very interesting
study in which they screened 99 unrelated patients with
non-syndromic RHD for mutations in TCF2, PAX2,
EYA1, SIX1 and SALL1 genes (European multicenter Effect
of Strict Blood Pressure Control and ACE Inhibition on
CRF Progression in Pediatric Patients/ESCAPE study)
[34]. In the study, mutations or variants in these genes were
detected in 17 (17%) of the patients. Fifteen percent of pa-
tients with RHD had mutations in TCF2 or PAX2, whereas
abnormalities in EYA1, SALL1 and SIX1 were rare. This
demonstrated that mutations in TCF2 or PAX2 are more fre-
quently observed than mutations in other genes. Interest-
ingly, they identified a SIX1 sequence variant in two
siblings with renal-coloboma syndrome as a result of
PAX2 mutation, which suggested an oligogenic inheritance
in these cases with CAKUT. The variability in the severity
of CAKUT between individuals with identical mutations
also invokes the role of ‘modifier genes’ in the pathogene-
sis of the disease.

In this study, we performed a genome-wide search for
linkage in Somalian kindred with 12 children, eight of
whom presented with CAKUT. We identify a new non-
syndromic recessive gene locus for CAKUT on chromo-
some 8q24 and report fine mapping to a 2.5-Mb genetic
interval. This 2.5-Mb interval on chromosome 8q24 con-
tains only one annotated gene calledKHdomain containing,
RNAbinding, signal transduction associated 3 (KHDRBS3).
KHDRBS3 is an RNA-binding protein that plays a role in
the regulation of alternative splicing and influences mRNA
splice site selection and exon inclusion [34,36]. It may also
play a role as a negative regulator of cell growth and inhi-
bits cell proliferation. In the tissues, it is expressed in testis,
skeletal muscle and brain. In the kidneys, it is expressed in
podocytes and the glomerular epithelial cells [37].

Materials and methods

Patient recruitment

Blood samples and clinical data were obtained after informed consent
from the parents and 12 children, eight of whom were affected with CA-
KUT. Ethnic origin of this family was Somalian. The pedigree is depicted
in Figure 1. The affected individuals showed a diverse spectrum of CA-
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KUT as follows: unilateral renal agenesis, kidney malrotation, severe ur-
eteropelvic junction obstruction, duplication of the pyelon, VUR grades
II–V, Hutch diverticulum and remnant ureteral ostium. The clinical find-
ings in this family have been described previously [38]. However, while
updating the pedigree data from the previous publication, it was revealed
that Individual II-4 is also affected. Furthermore, Individuals II-3 and II-4
were found to be dizygotic twins. Diagnosis was established by pediatric
nephrologists and pediatric urologists. The affected status in an individual
was defined by the presence of at least two out of the following malfor-
mations: unilateral renal agenesis, severe ureteropelvic junction obstruc-
tion, VUR grade III or higher. The findings were confirmed by abdominal
ultrasounds, intravenous urogram (IVU) and renal scans. Further, clinical
characteristics of the affected individuals are shown in Table 1. Age at
detection of CAKUT ranged from 0 to 10 years. The mother of the affect-
ed individuals is healthy with completely normal renal ultrasound.
Though the father was unavailable for the study, he is also known to be
healthy with no medical records or history of hospitalization.

Genome-wide linkage analysis

Genomic DNA was isolated from blood samples according to manufac-
turer's instructions (Puregene Gentra Systems). For the genome-wide
search for linkage, DNA was available from eight affected siblings, three
apparently unaffected siblings and the parents. No DNA was available
from Individual II-3. Family history revealed that the maternal grand-
mother, her brother and her sister were also affected by an unspecified uri-
nary tract malformation. Clinical data from these individuals were
unavailable. We performed genome-wide scans for linkage on the eight af-
fected children and both parents using a 50K single-nucleotide polymor-
phism (SNP) arrays (GeneChip) from Affymetrix, Inc (50K Hind Array).
As neither parent is affected and as it is not known whether they are con-
sanguineous, the results of the genome-wide search for linkage were ana-
lysed under a recessive model of inheritance alternatively, with and without
the assumption of consanguinity.

Since many cases of urinary tract malformations are oligosymptomatic
and therefore unrecognized due to incomplete penetrance or variable ex-

pressivity [4], only affected individuals were evaluated for Logarithm of
the ODDs (LOD) score analysis, and apparently, unaffected individuals
were coded as unknown affected status (‘affecteds-only strategy’). Para-
metric linkage analysis was performed by a modified version of the pro-
gram GENEHUNTER 2.1 [39,40] and by the program ALLEGRO [41].
Haplotypes were reconstructed with ALLEGRO and presented graphical-
ly with HaploPainter [42]. All data handling was performed using the
graphical user interface ALOHOMORA [43].

Mutation analysis

For all the affected-only individuals of this family, exon PCR and direct
sequencing was performed in the candidate gene KHDRBS3, the only an-
notated gene present in the 2.5-Mb interval on chromosome 8q24. Se-
quences were aligned and evaluated with the SEQUENCHER™
software (Gene Codes Corporation, Ann Arbor, MI).

Results

Haplotype analysis data from the genome-wide search for
linkage excluded the known loci for urinary tract malfor-
mations on chromosomes 1p13 [21], 6p21 [22–24],
19q13 [25], 10q26 [26], 13q33–34 [27] and the chromo-
somal regions containing candidate genes such as EYA1,
SIX1, SIX5, TCF2, PAX2, BMP4, SIX2, UPIII, SALL1 and
others. The genome-wide search under the non-consan-
guineous recessive model yielded a single region with a sig-
nificant maximum parametric LOD score of (LODmax =
4.2) on chromosome 8q24 (Figure 2A). There was no addi-
tional alternative suggestive locus anywhere in the genome
(Figure 2A). Haplotype analysis revealed that in the region

Fig. 1. Pedigree of the Somalian kindred with CAKUT (circles denote females, squares denote males; filled symbols represent affected individuals;
Individuals II-3 and II-4 are dizygotic twins).

Table 1. Clinical characteristics on the eight individuals with CAKUT from Somalian family

Individual Age of diagnosis

VUR UPJO

Renal agenesis Further findingsLeft Right Left Right

II-4 9 years + +
II-5 10 years + + Duplicate left pyelon
II-6 6 years + + (left)
II-7 1 month +a + (left) Remnant left ureteral ostium
II-10 in utero + +
II-11 5 days + +
II-13 5 days + +
II-15 1 day + + Right Hutch diverticulum,

malrotated left kidney

VUR—vesicoureteral reflux, UPJO—ureteropelvic junction obstruction.
a

Presumed diagnosis before surgery in Somalia.
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Fig. 2. (A) Parametric multipoint LOD score profile across the human genome, calculated in the eight affected individuals for a non-consanguineous
model. Parametric LOD scores are on the y-axis in relation to genetic position on the x-axis. Human chromosomes are concatenated from p-terminal
(left) to q-terminal (right) on the x-axis. Note the significant maximum LOD score of 4.2 on human chromosome 8, defining a new gene locus
(CAKUT 8) for CAKUT on chromosome 8q24. (B) Haplotypes of the affected children and parents on chromosome 8q24. Only data from
affected children are shown. All children have inherited the same paternal (represented in yellow) and maternal (represented in red) haplotype.
Recombination breakpoints in Individuals II-5 and II-15 define the proximal and distal boundaries, respectively, of the critical interval. Flanking
markers SNP_A-1740062 and SNP_A-1653225 are underlined.
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of chromosome 8q, all eight affected children carried the
same maternal haplotype (Figure 2B). The proximal flank-
ing marker SNP_A-1740062 and distal flanking marker
SNP_A-1653225 were defined by recombination events
in Individuals II-5 and II-15, respectively, which delimit a
critical genetic interval of 2.5-Mb physical distance. No
mutation was found by directly sequencing all exons of
the only annotated gene, KHDRBS3, within the region (data
not shown).

Discussion

Employing an SNP array mapping strategy, we identified
by genome-wide linkage analysis a new gene locus for
non-syndromic recessive CAKUT, mapping it to chromo-
some 8q24. According to the University of California
Santa Cruz Genome Browser, the interval between mar-
kers SNP_A-1740062 and SNP_A-1653225 spans a phys-
ical distance of approximately 2.5 Mb.

In this Somalian family, as eight out of 12 children are
affected, the mode of inheritance is more likely to be an
autosomal dominant trait, which would then imply that
one of the parents was affected. However, both, the father
and the mother of the affected children, are known to be
healthy with no clinical history. Their consanguinity is al-
so unknown. In light of healthy parents, we thus consider
the mode of inheritance as an autosomal recessive trait
and believe that the high rate of affected children is the
result of a random genetic effect.

In addition to the 12 children shown in the pedigree
(Figure 1), there are four more non-affected children
who are from a different father (data not shown). The fact
that all four children from a different father are healthy al-
so supports the autosomal recessive model of inheritance
of the disease.

We thus consider an autosomal dominant or codominant
transmission (with incomplete penetrance and variable ex-
pressivity in the parents) unlikely, although based on the
data presented, it cannot be ruled out with absolute certain-
ty. The evaluation of the total genome search for linkage
based on this dominant model of inheritance did not yield
a significant LOD score (data not shown).

In summary, by total genome search for linkage, we
mapped a new recessive locus (CAKUT1) for CAKUT
to chromosome 8q24. The critical genetic region is flanked
by markers SNP_A-1740062 and SNP_A-1653225 by the
criterion of lack of consanguinity in parents. Mutational
analysis of KHDRBS3, the only known gene within the
2.5-Mb interval, did not reveal any mutations. There is a
slight possibility that we might be missing a disease-
causing mutation in the promoter region of this gene,
but it is very unlikely. Large-scale analysis of the entire
critical genetic region will be necessary to identify the
disease-causing gene. The identification of the gene mu-
tated in the CAKUT phenotype will provide further in-
sights into the molecular basis of urinary tract infections
and into the development of the kidney and urinary tract.
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Abstract
Alagille Syndrome (OMIM 118450) is a multisystem de-
velopmental disorder inherited in an autosomal dominant
pattern with variable expression. It commonly manifests
in children with early cholestatic jaundice due to paucity
of interlobular biliary ducts. Renal involvement is less

common but can take various forms including renovascu-
lar disease, renal agenesis or hypoplasia, cystic renal dis-
ease, mesangiolipidosis, tubulointerstitial nephritis and
renal tubular acidosis. We describe a family of Alagille
syndrome with JAG 1 mutation running through at least
two generations, affecting four members with variable
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