167 research outputs found

    Government Speech 2.0

    Get PDF
    New expressive technologies continue to transform the ways in which members of the public speak to one another. Not surprisingly, emerging technologies have changed the ways in which government speaks as well. Despite substantial shifts in how the government and other parties actually communicate, however, the Supreme Court to date has developed its government speech doctrine – which recognizes “government speech” as a defense to First Amendment challenges by plaintiffs who claim that the government has impermissibly excluded their expression based on viewpoint – only in the context of disputes involving fairly traditional forms of expression. In none of these decisions, moreover, has the Court required government publicly to identify itself as the source of a contested message to satisfy the government speech defense to a First Amendment claim. The Court’s failure to condition the government speech defense on the message’s transparent identification as governmental is especially mystifying because the costs of such a requirement are so small when compared to its considerable benefits in ensuring that government remains politically accountable for its expressive choices. This Article seeks to start a conversation about how courts – and the rest of us – might re-think our expectations about government speech in light of government’s increasing reliance on emerging technologies that have dramatically altered expression’s speed, audience, collaborative nature, and anonymity. It anticipates the next generation of government speech disputes in which certain associations and entanglements between government and private speakers complicate the government speech question. By adding to these challenges, government’s increasing use of newer technologies that vary in their interactivity and transparency may give the Court additional reason to re-examine its government speech jurisprudence. “Government Speech 2.0” thus refers not only to the next generation of government speech, but also to the possibility that government’s increasing reliance on emerging expressive technologies may help inspire the next generation of government speech doctrine: one more appropriately focused on ensuring government’s meaningful political accountability for its expressive choices

    Modelling chemotherapy resistance in palliation and failed cure

    Get PDF
    The goal of palliative cancer chemotherapy treatment is to prolong survival and improve quality of life when tumour eradication is not feasible. Chemotherapy protocol design is considered in this context using a simple, robust, model of advanced tumour growth with Gompertzian dynamics, taking into account the effects of drug resistance. It is predicted that reduced chemotherapy protocols can readily lead to improved survival times due to the effects of competition between resistant and sensitive tumour cells. Very early palliation is also predicted to quickly yield near total tumour resistance and thus decrease survival duration. Finally, our simulations indicate that failed curative attempts using dose densification, a common protocol escalation strategy, can reduce survival times

    Dose-dense adjuvant chemotherapy for primary breast cancer

    Get PDF
    Adjuvant chemotherapy has been proven to reduce significantly the risk for relapse and death in women with operable breast cancer. Nevertheless, the prognosis for patients presenting with extensive axillary lymph node involvement remains suboptimal. In an attempt to improve on the efficacy of existing chemotherapy, a phase III intergroup trial led by the Cancer and Leukemia Group B (CALGB 97-41) was designed, which tested a mathematical model of tumor growth based on the Norton–Simon hypothesis. This hypothesis, developed about 3 decades ago, and the kinetic model derived from it, created the basis of the concepts of dose density and sequential therapy, both of which were tested in CALGB 97-41. This large prospective randomized trial demonstrated that shortening the time interval between each chemotherapy cycle while maintaining the same dose size resulted in significant improvements in disease-free and overall survival in patients with node-positive breast carcinoma. This finding is highly relevant and has immediate implications for clinical practice

    Evolution of Resistance to Targeted Anti-Cancer Therapies during Continuous and Pulsed Administration Strategies

    Get PDF
    The discovery of small molecules targeted to specific oncogenic pathways has revolutionized anti-cancer therapy. However, such therapy often fails due to the evolution of acquired resistance. One long-standing question in clinical cancer research is the identification of optimum therapeutic administration strategies so that the risk of resistance is minimized. In this paper, we investigate optimal drug dosing schedules to prevent, or at least delay, the emergence of resistance. We design and analyze a stochastic mathematical model describing the evolutionary dynamics of a tumor cell population during therapy. We consider drug resistance emerging due to a single (epi)genetic alteration and calculate the probability of resistance arising during specific dosing strategies. We then optimize treatment protocols such that the risk of resistance is minimal while considering drug toxicity and side effects as constraints. Our methodology can be used to identify optimum drug administration schedules to avoid resistance conferred by one (epi)genetic alteration for any cancer and treatment type

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Measurement of the flavour composition of dijet events in pp collisions at root s=7 TeV with the ATLAS detector

    Get PDF
    This paper describes a measurement of the flavour composition of dijet events produced in pp collisions at √s=7 TeV using the ATLAS detector. The measurement uses the full 2010 data sample, corresponding to an integrated luminosity of 39 pb−1. Six possible combinations of light, charm and bottom jets are identified in the dijet events, where the jet flavour is defined by the presence of bottom, charm or solely light flavour hadrons in the jet. Kinematic variables, based on the properties of displaced decay vertices and optimised for jet flavour identification, are used in a multidimensional template fit to measure the fractions of these dijet flavour states as functions of the leading jet transverse momentum in the range 40 GeV to 500 GeV and jet rapidity |y|<2.1. The fit results agree with the predictions of leading- and next-to-leading-order calculations, with the exception of the dijet fraction composed of bottom and light flavour jets, which is underestimated by all models at large transverse jet momenta. The ability to identify jets containing two b-hadrons, originating from e.g. gluon splitting, is demonstrated. The difference between bottom jet production rates in leading and subleading jets is consistent with the next-to-leading-order predictions

    Search for R-parity-violating supersymmetry in events with four or more leptons in sqrt(s) =7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for new phenomena in final states with four or more leptons (electrons or muons) is presented. The analysis is based on 4.7 fb−1 of s=7  TeV \sqrt{s}=7\;\mathrm{TeV} proton-proton collisions delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in two signal regions: one that requires moderate values of missing transverse momentum and another that requires large effective mass. The results are interpreted in a simplified model of R-parity-violating supersymmetry in which a 95% CL exclusion region is set for charged wino masses up to 540 GeV. In an R-parity-violating MSUGRA/CMSSM model, values of m 1/2 up to 820 GeV are excluded for 10 < tan ÎČ < 40

    Search for high-mass resonances decaying to dilepton final states in pp collisions at s√=7 TeV with the ATLAS detector

    Get PDF
    The ATLAS detector at the Large Hadron Collider is used to search for high-mass resonances decaying to an electron-positron pair or a muon-antimuon pair. The search is sensitive to heavy neutral Zâ€Č gauge bosons, Randall-Sundrum gravitons, Z * bosons, techni-mesons, Kaluza-Klein Z/Îł bosons, and bosons predicted by Torsion models. Results are presented based on an analysis of pp collisions at a center-of-mass energy of 7 TeV corresponding to an integrated luminosity of 4.9 fb−1 in the e + e − channel and 5.0 fb−1 in the ÎŒ + ÎŒ −channel. A Z â€Č boson with Standard Model-like couplings is excluded at 95 % confidence level for masses below 2.22 TeV. A Randall-Sundrum graviton with coupling k/MPl=0.1 is excluded at 95 % confidence level for masses below 2.16 TeV. Limits on the other models are also presented, including Technicolor and Minimal Zâ€Č Models

    Tolerability of a rapid-escalation vinblastine-prednisolone protocol in dogs with mast cell tumours

    Get PDF
    Optimal chemotherapy protocols for high-risk mast cell tumours (MCTs) are unknown. The purpose of this study was to determine the tolerability and toxicity profile of a rapidly escalating vinblastine and prednisolone protocol (VPP) in which 3.00 mg/m2 was administered once 7 days apart: at day 14 and at day 21. Dogs with chemotherapy-naĂŻve MCTs presenting to the Oncology Service of a single institution were prospectively enrolled to receive escalating vinblastine, and haematology and a standardised quality-of-life questionnaire were assessed prior to each dosage. Thirty-four dogs were included: 30 with microscopic disease treated with adequate local therapy and four with macroscopic disease. Of 220 doses of vinblastine administered, 4% were associated with grade 3 and 4 toxicity. A total of 70% of dogs tolerated 3.00 mg/m2 given 7 days apart at day 14 and 21, although 29% of dogs developed dose-limiting toxicities and 8% discontinued the protocol due to toxicity. In conclusion, VPP was well-tolerated overall, although prior to further dose intensity optimisation, it is important to determine if dose intensity is linked to outcome in canine MCT to avoid unwarranted toxicity

    Prophylaxis of chemotherapy-induced febrile neutropenia with granulocyte colony-stimulating factors: where are we now?

    Get PDF
    Updated international guidelines published in 2006 have broadened the scope for the use of granulocyte colony-stimulating factor (G-CSF) in supporting delivery of myelosuppressive chemotherapy. G-CSF prophylaxis is now recommended when the overall risk of febrile neutropenia (FN) due to regimen and individual patient factors is ≄20%, for supporting dose-dense and dose-intense chemotherapy and to help maintain dose density where dose reductions have been shown to compromise outcomes. Indeed, there is now a large body of evidence for the efficacy of G-CSFs in supporting dose-dense chemotherapy. Predictive tools that can help target those patients who are most at risk of FN are now becoming available. Recent analyses have shown that, by reducing the risk of FN and chemotherapy dose delays and reductions, G-CSF prophylaxis can potentially enhance survival benefits in patients receiving chemotherapy in curative settings. Accumulating data from ‘real-world’ clinical practice settings indicate that patients often receive abbreviated courses of daily G-CSF and consequently obtain a reduced level of FN protection. A single dose of PEGylated G-CSF (pegfilgrastim) may provide a more effective, as well as a more convenient, alternative to daily G-CSF. Prospective studies are needed to validate the importance of delivering the full dose intensity of standard chemotherapy regimens, with G-CSF support where appropriate, across a range of settings. These studies should also incorporate prospective evaluation of risk stratification for neutropenia and its complications
    • 

    corecore