154 research outputs found

    FIBRINOLYTIC ENZYME FROM BACILLUS AMYLOLIQUEFACIENS: OPTIMISATION AND SCALE UP STUDIES

    Get PDF
    Objective: This research work was carried out to identify a potent microorganism, which produced the fibrinolytic enzyme and to optimise the media and growth parameters to achieve the maximal enzyme production for commercial application. Methods: Microorganisms were isolated from different sources and assayed for fibrinolytic activity. The shortlisted cultures after preliminary screening (casein hydrolysis, blood plate assay and blood clot dissolution) were identified using 16S rRNA amplification method. The media and growth parameters were optimized to achieve the maximal enzyme activity. In-silico studies were carried out to identify the activators and inhibitors of the enzyme. Results: Two species of Bacillus, namely, Bacillus amyloliquefaciens and Bacillus licheniformis, isolated from spoilt milk and soy flour, respectively, exhibited fibrinolytic activity. In the laboratory scale studies, of these two cultures, B. amyloliquefaciens produced the Fibrinolytic enzyme in higher quantities, 28.98 FU/mL, compared to 26.63 FU/mL in B. licheniformis. The maximal activities were obtained after 72 h. The optimum conditions at laboratory scale for the maximal production of the fibrinolytic enzyme were: pH 7.2, temperature 37 C and agitation 200 rpm. When scale up studies with B. amyloliquefaciens in a 7 L Fermentor were undertaken. The maximal activity obtained was 55.60 FU/mL in 72 h, compared to that of 28.98 FU/mL in shake flask studies. The molecular weight of the enzyme was estimated to be about 38 kDa. In in-silico studies, it was observed that PMSF inhibited the fibrinolytic activity, thereby, confirming this fibrinolytic enzyme is a serine protease (Nattokinase). Conclusion: The enzyme had exhibited excellent blood clot dissolving property and therefore may be considered for further scale up and commercial exploitation

    Key diffusion mechanisms involved in regulating bidirectional water permeation across E. coli outer membrane lectin

    Get PDF
    Capsular polysaccharides (CPSs) are major bacterial virulent determinants that facilitate host immune evasion. E. coli group1 K30CPS is noncovalently attached to bacterial surface by Wzi, a lectin. Intriguingly, structure based phylogenetic analysis indicates that Wzi falls into porin superfamily. Molecular dynamics (MD) simulations further shed light on dual role of Wzi as it also functions as a bidirectional passive water specific porin. Such a functional role of Wzi was not realized earlier, due to the occluded pore. While five water specific entry points distributed across extracellular &periplasmic faces regulate the water diffusion involving different mechanisms, a luminal hydrophobic plug governs water permeation across the channel. Coincidently, MD observed open state structure of "YQF" triad is seen in sugar-binding site of sodium-galactose cotransporters, implicating its involvement in K30CPS surface anchorage. Importance of Loop 5 (L5) in membrane insertion is yet another highlight. Change in water diffusion pattern of periplasmic substitution mutants suggests Wzi's role in osmoregulation by aiding in K30CPS hydration, corroborating earlier functional studies. Water molecules located inside β-barrel of Wzi crystal structure further strengthens the role of Wzi in osmoregulation. Thus, interrupting water diffusion or L5 insertion may reduce bacterial virulence

    Automatic modulation classification for cognitive radios using cumulants based on fractional lower order statistics

    Full text link
    Automatic modulation classification (AMC) finds various applications in cognitive radios. This paper presents a method for the automatic classification using cumulants derived using fractional lower order statistics. The performance of the classifier is presented in the form of probability of correct classification under noisy and fading conditions. Unlike many of the conventional methods, the proposed method does not require a priori knowledge of signal parameters. The proposed method is also more robust to different noises. Simulation results show that the proposed method can achieve better classification accuracy when compared to conventional cumulant based AMC method, in various impulsive noise conditions. 1

    Local Piezoelectric Behavior of Potassium Sodium Niobate Prepared by a Facile Synthesis via Water Soluble Precursors

    Get PDF
    Due to the ever-increasing restrictions connected to the use of toxic lead-based materials, the developing of lead-free piezoceramics has become one of the most urgent tasks. In this context, potassium sodium niobate materials (KNN) have attracted a lot of interest as promising candidates due to their excellent piezo properties. For this reason, many efforts have been addressed to optimize the synthesis process now suffering by several drawbacks including the high volatilization of potassium and sodium at the conventional high temperature treatments and the use of expensive metal precursors. To overcome these issues, a new modified Pechini method to synthesize single phase KNaNbO powders, from water soluble metal precursors, is presented. Microstructural and structural parameters are characterized by X-ray diffraction (XRD). Depending on the amount of citric acid added to the starting reagents, two pure single-phase KNaNbO (2 g citric acid) and KNaNbO (0.2 g citric acid), respectively, are obtained with a good crystallinity at a moderate temperature of 500 °C. The piezo responses of the as calcined systems are tested by piezoresponse force microscopy (PFM). KNaNbO exhibits a much higher response with respect to the other phase, which relates to the larger crystallinity and to the chemical composition

    Global, regional, and national levels and trends in burden of oral conditions from 1990 to 2017 : a systematic analysis for the Global Burden of Disease 2017 Study

    Get PDF
    Government and nongovernmental organizations need national and global estimates on the descriptive epidemiology of common oral conditions for policy planning and evaluation. The aim of this component of the Global Burden of Disease study was to produce estimates on prevalence, incidence, and years lived with disability for oral conditions from 1990 to 2017 by sex, age, and countries. In addition, this study reports the global socioeconomic pattern in burden of oral conditions by the standard World Bank classification of economies as well as the Global Burden of Disease Socio-demographic Index. The findings show that oral conditions remain a substantial population health challenge. Globally, there were 3.5 billion cases (95% uncertainty interval [95% UI], 3.2 to 3.7 billion) of oral conditions, of which 2.3 billion (95% UI, 2.1 to 2.5 billion) had untreated caries in permanent teeth, 796 million (95% UI, 671 to 930 million) had severe periodontitis, 532 million (95% UI, 443 to 622 million) had untreated caries in deciduous teeth, 267 million (95% UI, 235 to 300 million) had total tooth loss, and 139 million (95% UI, 133 to 146 million) had other oral conditions in 2017. Several patterns emerged when the World Bank’s classification of economies and the Socio-demographic Index were used as indicators of economic development. In general, more economically developed countries have the lowest burden of untreated dental caries and severe periodontitis and the highest burden of total tooth loss. The findings offer an opportunity for policy makers to identify successful oral health strategies and strengthen them; introduce and monitor different approaches where oral diseases are increasing; plan integration of oral health in the agenda for prevention of noncommunicable diseases; and estimate the cost of providing universal coverage for dental care

    A high-order FEM formulation for free and forced vibration analysis of a nonlocal nonlinear graded Timoshenko nanobeam based on the weak form quadrature element method

    Get PDF
    The purpose of this paper is to provide a high-order finite element method (FEM) formulation of nonlocal nonlinear nonlocal graded Timoshenko based on the weak form quadrature element method (WQEM). This formulation offers the advantages and flexibility of the FEM without its limiting low-order accuracy. The nanobeam theory accounts for the von Kármán geometric nonlinearity in addition to Eringen’s nonlocal constitutive models. For the sake of generality, a nonlinear foundation is included in the formulation. The proposed formulation generates high-order derivative terms that cannot be accounted for using regular first- or second-order interpolation functions. Hamilton’s principle is used to derive the variational statement which is discretized using WQEM. The results of a WQEM free vibration study are assessed using data obtained from a similar problem solved by the differential quadrature method (DQM). The study shows that WQEM can offer the same accuracy as DQM with a reduced computational cost. Currently the literature describes a small number of high-order numerical forced vibration problems, the majority of which are limited to DQM. To obtain forced vibration solutions using WQEM, the authors propose two different methods to obtain frequency response curves. The obtained results indicate that the frequency response curves generated by either method closely match their DQM counterparts obtained from the literature, and this is despite the low mesh density used for the WQEM systems

    Mapping local patterns of childhood overweight and wasting in low- and middle-income countries between 2000 and 2017

    Get PDF
    A double burden of malnutrition occurs when individuals, household members or communities experience both undernutrition and overweight. Here, we show geospatial estimates of overweight and wasting prevalence among children under 5 years of age in 105 low- and middle-income countries (LMICs) from 2000 to 2017 and aggregate these to policy-relevant administrative units. Wasting decreased overall across LMICs between 2000 and 2017, from 8.4% (62.3 (55.1–70.8) million) to 6.4% (58.3 (47.6–70.7) million), but is predicted to remain above the World Health Organization’s Global Nutrition Target of <5% in over half of LMICs by 2025. Prevalence of overweight increased from 5.2% (30 (22.8–38.5) million) in 2000 to 6.0% (55.5 (44.8–67.9) million) children aged under 5 years in 2017. Areas most affected by double burden of malnutrition were located in Indonesia, Thailand, southeastern China, Botswana, Cameroon and central Nigeria. Our estimates provide a new perspective to researchers, policy makers and public health agencies in their efforts to address this global childhood syndemic
    corecore