111 research outputs found

    Percolation threshold enables optical resistive‐memory switching and light‐tuneable synaptic learning in segregated nanocomposites

    Get PDF
    An optical memristor where the electrical resistance memory depends on the history of both the current flowing through the device and the irradiance of incident light onto it is demonstrated. It is based on a nanocomposite consisting of functionalized gold nanoparticles in an optically active azobenzene polymer matrix. The composite has an extremely low percolation threshold of 0.04% by volume for conductivity because of the aggregation of the conducting nanoparticles into filamentary nanochannels. Optical irradiation results in photomechanical switching through expansion of the thin film from above to below the percolation threshold, giving a large LOW/HIGH resistance ratio of 103. The device acts as an artificial synapse, the conductivity or plasticity of which can be independently modulated, either electrically or optically, to enable tunable and reconfigurable synaptic circuits for brain‐inspired artificial intelligent or visual memory arrays. The lifetime of the resistive‐memory states is also optically controllable, which enables spatial modulation of long‐ and short‐term memory

    Multilevel Resistance Switching and Enhanced Spin Transition Temperature in Single and Double Molecule Spin Crossover Nanogap Devices

    Get PDF
    Spin crossover (SCO) molecules are promising bi-stable magnetic switches with applications in molecular spintronics. However, little is known about the switching effects of a single SCO molecule when it is confined between two metal electrodes. Here we examine the switching properties of a [Fe(III)(EtOSalPet )(NCS)] SCO molecule that is specifically tailored for surface deposition and binding to only one gold electrode in a nanogap device. Temperature dependent conductivity measurements on SCO molecule containing electromigrated gold break junctions show voltage independent telegraphic-like switching between two resistance states at temperature below 200 K. The transition temperature is very different from the transition temperature of 83 K that occurs in a bulk film of the same material. This indicates that the bulk, co-operative SCO phenomenon is no longer preserved for a single molecule and that the surface interaction drastically increases the temperature of the SCO phenomenon. Another key finding of this work is that some devices show switching between multiple resistance levels. We propose that in this case, two SCO molecules are present within the nanogap with both participating in the electronic transport and switching

    Lyotropic 'hairy' TiO2 nanorods

    Get PDF
    We report the synthesis of the first stable, solution-processable and photocrosslinkable hybrid organic/ inorganic titanium dioxide nanorods as ‘hairy rods’ coated with phosphonate ligands with photoreactive coumarin groups located in a terminal position. The relationships between the chemical structure of the diethyl-u-[(7-oxycoumaryl)-n-alkyl]phosphonate ligands on the ligand exchange rate (LER) and the solubility of the resultant ligand-stabilized titanium dioxide nanorods in organic solvents are elucidated. These TiO2 nanorods, with an organic ligand coating, are short enough (aspect ratio ¼ 5–8) to be dissolved in chlorobenzene at high concentrations, but long enough to form lyotropic nematic liquid crystals. These colloidal solutions are used to deposit a thin, uniform layer of hybrid organic/inorganic TiO2 nanorods with their long axes in the plane of a flat, smooth substrate through a self-organization process. Standard photolithographic patterning creates an insoluble dielectric layer of the desired thickness, smoothness and uniformity and with a dielectric constant of sufficient magnitude, k ¼ 8, suitable for the fabrication of multilayer, plastic electronic devices using solution-based fabrication techniques, such as ink-jet printing, used in roll-to-roll manufacturing

    Reproducibility of the airway response to an exercise protocol standardized for intensity, duration, and inspired air conditions, in subjects with symptoms suggestive of asthma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Exercise testing to aid diagnosis of exercise-induced bronchoconstriction (EIB) is commonly performed. Reproducibility of the airway response to a standardized exercise protocol has not been reported in subjects being evaluated with mild symptoms suggestive of asthma but without a definite diagnosis. This study examined reproducibility of % fall in FEV<sub>1 </sub>and area under the FEV<sub>1 </sub>time curve for 30 minutes in response to two exercise tests performed with the same intensity and duration of exercise, and inspired air conditions.</p> <p>Methods</p> <p>Subjects with mild symptoms of asthma exercised twice within approximately 4 days by running for 8 minutes on a motorized treadmill breathing dry air at an intensity to induce a heart rate between 80-90% predicted maximum; reproducibility of the airway response was expressed as the 95% probability interval.</p> <p>Results</p> <p>Of 373 subjects challenged twice 161 were positive (≥10% fall FEV<sub>1 </sub>on at least one challenge). The EIB was mild and 77% of subjects had <15% fall on both challenges. Agreement between results was 76.1% with 56.8% (212) negative (< 10% fall FEV<sub>1</sub>) and 19.3% (72) positive on both challenges. The remaining 23.9% of subjects had only one positive test. The 95% probability interval for reproducibility of the % fall in FEV<sub>1 </sub>and AUC<sub>0-30 </sub>min was ± 9.7% and ± 251% for all 278 adults and ± 13.4% and ± 279% for all 95 children. The 95% probability interval for reproducibility of % fall in FEV<sub>1 </sub>and AUC<sub>0-30 min </sub>for the 72 subjects with two tests ≥10% fall FEV<sub>1 </sub>was ± 14.6% and ± 373% and for the 34 subjects with two tests ≥15% fall FEV<sub>1 </sub>it was ± 12.2% and ± 411%. Heart rate and estimated ventilation achieved were not significantly different either on the two test days or when one test result was positive and one was negative.</p> <p>Conclusions</p> <p>Under standardized, well controlled conditions for exercise challenge, the majority of subjects with mild symptoms of asthma demonstrated agreement in test results. Performing two tests may need to be considered when using exercise to exclude or diagnose EIB, when prescribing prophylactic treatment to prevent EIB and when designing protocols for clinical trials.</p

    Thermal Transport in Micro- and Nanoscale Systems

    Get PDF
    Small-scale (micro-/nanoscale) heat transfer has broad and exciting range of applications. Heat transfer at small scale quite naturally is influenced – sometimes dramatically – with high surface area-to-volume ratios. This in effect means that heat transfer in small-scale devices and systems is influenced by surface treatment and surface morphology. Importantly, interfacial dynamic effects are at least non-negligible, and there is a strong potential to engineer the performance of such devices using the progress in micro- and nanomanufacturing technologies. With this motivation, the emphasis here is on heat conduction and convection. The chapter starts with a broad introduction to Boltzmann transport equation which captures the physics of small-scale heat transport, while also outlining the differences between small-scale transport and classical macroscale heat transport. Among applications, examples are thermoelectric and thermal interface materials where micro- and nanofabrication have led to impressive figure of merits and thermal management performance. Basic of phonon transport and its manipulation through nanostructuring materials are discussed in detail. Small-scale single-phase convection and the crucial role it has played in developing the thermal management solutions for the next generation of electronics and energy-harvesting devices are discussed as the next topic. Features of microcooling platforms and physics of optimized thermal transport using microchannel manifold heat sinks are discussed in detail along with a discussion of how such systems also facilitate use of low-grade, waste heat from data centers and photovoltaic modules. Phase change process and their control using surface micro-/nanostructure are discussed next. Among the feature considered, the first are microscale heat pipes where capillary effects play an important role. Next the role of nanostructures in controlling nucleation and mobility of the discrete phase in two-phase processes, such as boiling, condensation, and icing is explained in great detail. Special emphasis is placed on the limitations of current surface and device manufacture technologies while also outlining the potential ways to overcome them. Lastly, the chapter is concluded with a summary and perspective on future trends and, more importantly, the opportunities for new research and applications in this exciting field

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Statistical analysis of spin switching in coupled spin-crossover molecules

    No full text
    We study the switching behavior of two spin-crossover molecules residing in a nanojunction device consisting of two closely spaced gold electrodes. The spin states are monitored through a real-time measurement of the resistance of the junction. A statistical analysis of the resistance values, the occupation probabilities, and the lifetimes of the respective spin states shows that the two spin-crossover molecules are coupled to each other. We extract the parameters for a minimal model describing the two coupled spin-crossover molecules. Finally, we use the time dependence of factorial cumulants to study the impact of interactions between the two spin-crossover molecules on the switching dynamics
    corecore