887 research outputs found

    Detection and Antimicrobial Resistance Profile of Enteropathogenic (EPEC) and Shigatoxigenic Escherichia coli (STEC) in Conventional and Organic Broiler Chickens

    Get PDF
    ABSTRACT Enteropatogenic Escherichia coli (EPEC) and shigatoxigenic E. coli (STEC), are generally poultry and poultry product isolate and can cause serious human infections. Many strains may become resistant to various antimicrobials, which can hinder the treatment of bacterial diseases. Organic farming seeks to avoid the selection and frequency of antimicrobial-resistant bacteria. This study aims to verify the resistance of EPEC and STEC from organic and conventional (industrial) broiler isolates to antimicrobials. All isolates were submitted to disk diffusion test with tetracycline, gentamicin, enrofloxacin, ceftriaxone and amoxicillin + clavulanate (TET, GEN, ENO, CTX, AMC) and PCR to detect specific virulence genes for EPEC and STEC. A total of 297 E. coli strains were isolated, 213 from conventional. In organic broiler, 84 strains were isolated. The strains from the conventional broiler isolates were resistant to five antimicrobials tested: TET 48.82% (104/213), ENO 28.17% (60/213), CTX 15.49% (33/213), GEN 14.55% (31/213), and AMC 7.04% (15/213), and 9.86% (21/213) were considered multidrug-resistant. Organic chicken strains were resistant to four of the antimicrobials tested: TET 35.7% (30/84), ENO 9.5% (8/84), CTX 2.4% (2/84), GEN 4.8% (4/84). Of the strains from the organic broiler chicken isolates, only 1.2% (1/84) was considered multidrug-resistant. No EPEC and STEC were found in the organic chicken samples. The multidrug resistance was characterized in 9.52% (2/21) of the EPEC and 4.76% (1/21) of the STEC. The study demonstrated the absence of EPEC and STEC strains in organic broilers and carcasses and a lower frequency of multiresistant strains compared to conventional breeding

    Resistance Profile of Salmonella spp. to Third Generation Cephalosporins and Quinolones in Chicken Carcasses from Rio de Janeiro, Brazil

    Get PDF
    ABSTRACT Salmonella spp. is one of the major bacterial causes of foodborne gastroenteritis in humans. The aim of this study was to investigate antimicrobial susceptibility to cephalosporins and quinolones, and to identify the genetic mechanisms related to this resistance in strains of Salmonella spp. Seventy chicken carcass samples were collected from slaughterhouses in the state of Rio de Janeiro, Brazil. The phenotypic profile was detected by the disk-diffusion method and the search for genes encoding betalactamases, and resistance to quinolones was evaluated by PCR. The search for mutations in gyrA and parC was carried out by sequencing these genes. Eleven strains of Salmonella spp. of different serotypes were isolated. All the strains were resistant to at least one of the antimicrobials tested, and 63.64% (7/11) showed resistance to three or more antimicrobials. In the phenotypic test for ESBL production, 36.36% (4/11) of the strains were considered positive. PCR detected the resistance genes bla CMY-2, qnrB, bla CTX-M, and bla TEM. Among the isolates, 45.45% (5/11) simultaneously presented the bla CTX-M, bla TEM, qnrB genes and a mutation (Thr-57→Ser) in parC. Point mutations in the parC gene were detected in all the analyzed samples. Genes such as bla SHV, qnrA, qnrC, qnrD, qnrS, aac(6’)-Ib, qepA, and oqxAB were not detected. The study identified Salmonella spp. resistant to cephalosporins and quinolones, with resistance genes and mutations in parC, highlighting concerns about the adoption of biosecurity measures, responsible use of antimicrobials, and surveillance of resistant strains in the poultry chain

    Investigating the effectiveness and feasibility of exercise on microvascular reactivity and quality of life in systemic sclerosis patients: study protocol for a feasibility study

    Get PDF
    Background: Raynaud’s phenomenon is one of the first clinical manifestations observed in systemic sclerosis (SSc). This microvasculature disorder affects mostly the digits in over 95% of SSc patients, significantly affecting their healthrelated quality of life (HRQoL) and incurring higher hospital admissions and other healthcare costs. Exercise is known to improve both micro- and macrovascular function – aerobic exercise and resistance training, separately or combined, have been demonstrated to lead to significant vasculo-physiological improvements in conditions that present vasculopathy. However, the effects of a combined exercise programme on microcirculation in SSc patients has yet to be investigated. Therefore, the purpose of this study is to assess the effects of high-intensity interval training (HIIT) combined with circuit resistance training on the microvascular function in the digital area of SSc patients. Methods: This will be a randomised controlled, feasibility trial with two arms, wherein 30 patients with SSc in receipt of medical treatment will be randomly assigned to usual care (medical treatment) or to a 12-week supervised exercise programme. Patients in the exercise group will undertake two, 45-min sessions each week consisting of 30 min HIIT (30 s 100% peak power output/30 s passive recovery) on the arm crank ergometer and 15 min of upper body circuit resistance training. Patients will be assessed before as well as at 3 and 6 months following randomisation. Primary outcomes of the study will be recruitment and retention rate, intervention acceptability and adherence to the exercise programme. Secondary outcomes include the digital area cutaneous microvascular function (laser Doppler fluximetry combined with iontophoresis), physical fitness, functional ability, upper back transcutaneous oxygen tension, body composition and quality of life (EQ-5D-5L). Selected interviews with a subsample of patients will be undertaken to explore their experiences of having Raynaud’s phenomenon and the acceptability of the exercise intervention and study procedures. Discussion: Data from this study will be used to identify the feasibility of a combined exercise programme to be implemented in SSc patients, the acceptability of the intervention and the study design, and to determine the effects of exercise on the microvasculature. Overall, this study will provide sufficient data to inform and support a full multicentre clinical trial

    The Microbiome of Brazilian Mangrove Sediments as Revealed by Metagenomics

    Get PDF
    Here we embark in a deep metagenomic survey that revealed the taxonomic and potential metabolic pathways aspects of mangrove sediment microbiology. The extraction of DNA from sediment samples and the direct application of pyrosequencing resulted in approximately 215 Mb of data from four distinct mangrove areas (BrMgv01 to 04) in Brazil. The taxonomic approaches applied revealed the dominance of Deltaproteobacteria and Gammaproteobacteria in the samples. Paired statistical analysis showed higher proportions of specific taxonomic groups in each dataset. The metabolic reconstruction indicated the possible occurrence of processes modulated by the prevailing conditions found in mangrove sediments. In terms of carbon cycling, the sequences indicated the prevalence of genes involved in the metabolism of methane, formaldehyde, and carbon dioxide. With respect to the nitrogen cycle, evidence for sequences associated with dissimilatory reduction of nitrate, nitrogen immobilization, and denitrification was detected. Sequences related to the production of adenylsulfate, sulfite, and H2S were relevant to the sulphur cycle. These data indicate that the microbial core involved in methane, nitrogen, and sulphur metabolism consists mainly of Burkholderiaceae, Planctomycetaceae, Rhodobacteraceae, and Desulfobacteraceae. Comparison of our data to datasets from soil and sea samples resulted in the allotment of the mangrove sediments between those samples. The results of this study add valuable data about the composition of microbial communities in mangroves and also shed light on possible transformations promoted by microbial organisms in mangrove sediments

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV

    Search for pair-produced long-lived neutral particles decaying to jets in the ATLAS hadronic calorimeter in ppcollisions at √s=8TeV

    Get PDF
    The ATLAS detector at the Large Hadron Collider at CERN is used to search for the decay of a scalar boson to a pair of long-lived particles, neutral under the Standard Model gauge group, in 20.3fb−1of data collected in proton–proton collisions at √s=8TeV. This search is sensitive to long-lived particles that decay to Standard Model particles producing jets at the outer edge of the ATLAS electromagnetic calorimeter or inside the hadronic calorimeter. No significant excess of events is observed. Limits are reported on the product of the scalar boson production cross section times branching ratio into long-lived neutral particles as a function of the proper lifetime of the particles. Limits are reported for boson masses from 100 GeVto 900 GeV, and a long-lived neutral particle mass from 10 GeVto 150 GeV

    Search for R-parity-violating supersymmetry in events with four or more leptons in sqrt(s) =7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for new phenomena in final states with four or more leptons (electrons or muons) is presented. The analysis is based on 4.7 fb−1 of s=7  TeV \sqrt{s}=7\;\mathrm{TeV} proton-proton collisions delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in two signal regions: one that requires moderate values of missing transverse momentum and another that requires large effective mass. The results are interpreted in a simplified model of R-parity-violating supersymmetry in which a 95% CL exclusion region is set for charged wino masses up to 540 GeV. In an R-parity-violating MSUGRA/CMSSM model, values of m 1/2 up to 820 GeV are excluded for 10 < tan β < 40
    corecore