52 research outputs found

    Predicting new venture survival and growth: does the fog lift?

    Get PDF
    This paper investigates whether new venture performance becomes easier to predict as the venture ages: does the fog lift? To address this question we primarily draw upon a theoretical framework, initially formulated in a managerial context by Levinthal (Adm Sci Q 36(3):397–420, 1991) that sees new venture sales as a random walk but survival being determined by the stock of available resources (proxied by size). We derive theoretical predictions that are tested with a 10-year cohort of 6579 UK new ventures in the UK. We observe that our ability to predict firm growth deteriorates in the years after entry—in terms of the selection environment, the ‘fog’ seems to thicken. However, our survival predictions improve with time—implying that the ‘fog’ does lift

    A nucleotide binding rectification Brownian ratchet model for translocation of Y-family DNA polymerases

    Get PDF
    Y-family DNA polymerases are characterized by low-fidelity synthesis on undamaged DNA and ability to catalyze translesion synthesis over the damaged DNA. Their translocation along the DNA template is an important event during processive DNA synthesis. In this work we present a Brownian ratchet model for this translocation, where the directed translocation is rectified by the nucleotide binding to the polymerase. Using the model, different features of the available structures for Dpo4, Dbh and polymerase ι in binary and ternary forms can be easily explained. Other dynamic properties of the Y-family polymerases such as the fast translocation event upon dNTP binding for Dpo4 and the considerable variations of the processivity among the polymerases can also be well explained by using the model. In addition, some predicted results of the DNA synthesis rate versus the external force acting on Dpo4 and Dbh polymerases are presented. Moreover, we compare the effect of the external force on the DNA synthesis rate of the Y-family polymerase with that of the replicative DNA polymerase

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Promoting community socio-ecological sustainability through technology: A case study from Chile

    Get PDF
    The importance of community learning in effecting social change towards ecological sustainability has been recognised for some time. More recently, the use of Information and Communication Technology (ICT) tools to promote socio-ecological sustainability has been shown to have potential in community education for sustainable development (ESD). The effective design and use of technology for community learning implies an understanding of a range of cross- dimensional factors including: socio-cultural characteristics and needs of the target audience; considerations of available and culturally responsive types of technology; and non-formal pedagogical ESD strategies for community empowerment. In addition, both technology itself and social communities are dynamically evolving and complex entities. This article presents a case study which evaluated the potential of ICT for promoting ecological literacy and action competence amongst community members in southern Chile. The case study addressed the ecological deterioration of a lake, which is having deep social, economic, recreational and cultural implications locally. The authors’ research involved developing a theoret- ical framework for the design, implementation and use of ICT for community learning for sustainability. The framework was based on key ideas from ESD, ICT and community education, and was underpinned by a systems thinking approach to account for the dynamism and complexity of such settings. Activity theory provided a frame to address overarching socio-cultural elements when using technology as a mediating tool for community learning. The authors’ findings suggest that the use of an ICT tool, such as a website, can enhance ecological literacy in relation to a local socio-ecological issue

    Ocean sprawl facilitates dispersal and connectivity of protected species

    Get PDF
    Highly connected networks generally improve resilience in complex systems. We present a novel application of this paradigm and investigated the potential for anthropogenic structures in the ocean to enhance connectivity of a protected species threatened by human pressures and climate change. Biophysical dispersal models of a protected coral species simulated potential connectivity between oil and gas installations across the North Sea but also metapopulation outcomes for naturally occurring corals downstream. Network analyses illustrated how just a single generation of virtual larvae released from these installations could create a highly connected anthropogenic system, with larvae becoming competent to settle over a range of natural deep-sea, shelf and fjord coral ecosystems including a marine protected area. These results provide the first study showing that a system of anthropogenic structures can have international conservation significance by creating ecologically connected networks and by acting as stepping stones for cross-border interconnection to natural populations

    Notes for genera: basal clades of Fungi (including Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota)

    Get PDF
    Compared to the higher fungi (Dikarya), taxonomic and evolutionary studies on the basal clades of fungi are fewer in number. Thus, the generic boundaries and higher ranks in the basal clades of fungi are poorly known. Recent DNA based taxonomic studies have provided reliable and accurate information. It is therefore necessary to compile all available information since basal clades genera lack updated checklists or outlines. Recently, Tedersoo et al. (MycoKeys 13:1--20, 2016) accepted Aphelidiomycota and Rozellomycota in Fungal clade. Thus, we regard both these phyla as members in Kingdom Fungi. We accept 16 phyla in basal clades viz. Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota. Thus, 611 genera in 153 families, 43 orders and 18 classes are provided with details of classification, synonyms, life modes, distribution, recent literature and genomic data. Moreover, Catenariaceae Couch is proposed to be conserved, Cladochytriales Mozl.-Standr. is emended and the family Nephridiophagaceae is introduced
    corecore