419 research outputs found

    Determination of Total Antioxidant Content in Various Drinks by Amperometry

    Get PDF
    In the present work the total content of phenolic antioxidants in juice of some fruit and vegetables, in wines, water extracts of tea and herb were measured by amperometry. Efficiency of the method allowed determining the total antioxidant content in their binary and multimixes, including processes of frosting-defrosting and juice diluting as well. The deviation of experimentally received values of the total antioxidant content in some drink mixes from the values calculated proceeding from the additivity principle of the antioxidant content in separate drinks has been revealed

    A study on simulation analysis for laser-welded I-core sandwich plate with different material properties and T-joint weld characteristic

    Get PDF
    Stiffness and strength of sandwich plate vary depending on similar (SI) or dissimilar (DSI) material element (faceplate or core) and laser weld geometry. The issues of I-core sandwich plate characteristics are essential to attain practical sandwich plate application. Hence, research on different material properties and T-joint weld characteristics of I-core sandwich steel plate presents a positive understanding of various character factors that affect sandwich plate bending performance. In this paper, the I-core sandwich steel plate characteristic was investigated using finite element analysis (FEA). The 3-point bending with a fine meshing, interaction of elements, and load applied was kept constant. The partition size at the laser weld geometry is smaller, and the partition size continuously grows when further away from the weld geometry. The result shows that a combination of weak and strong material on either element will reduce I-core sandwich's stiffness and strength unless strong material is assigned at the faceplate and core. Moreover, there is a significant change when rootgap is present. This influencing the centric and eccentric of the weld. The weld width produces a perfect bending as wholesome T-joint, yet to achieve such traits is impossible in reality but possible when the weld length is closer to the length of the core. The exploration of these characteristics in response to I-core sandwich steel plate holds a good response in engaging for the multiple variables that affect the plate's stiffness and strength

    Birkhoff type decompositions and the Baker-Campbell-Hausdorff recursion

    Full text link
    We describe a unification of several apparently unrelated factorizations arisen from quantum field theory, vertex operator algebras, combinatorics and numerical methods in differential equations. The unification is given by a Birkhoff type decomposition that was obtained from the Baker-Campbell-Hausdorff formula in our study of the Hopf algebra approach of Connes and Kreimer to renormalization in perturbative quantum field theory. There we showed that the Birkhoff decomposition of Connes and Kreimer can be obtained from a certain Baker-Campbell-Hausdorff recursion formula in the presence of a Rota-Baxter operator. We will explain how the same decomposition generalizes the factorization of formal exponentials and uniformization for Lie algebras that arose in vertex operator algebra and conformal field theory, and the even-odd decomposition of combinatorial Hopf algebra characters as well as to the Lie algebra polar decomposition as used in the context of the approximation of matrix exponentials in ordinary differential equations.Comment: accepted for publication in Comm. in Math. Phy

    A 34-marker panel for imaging mass cytometric analysis of human snap-frozen tissue

    Get PDF
    Imaging mass cytometry (IMC) is able to quantify the expression of dozens of markers at sub-cellular resolution on a single tissue section by combining a novel laser ablation system with mass cytometry. As such, it allows us to gain spatial information and antigen quantificationin situ, and can be applied to both snap-frozen and formalin-fixed, paraffin-embedded (FFPE) tissue sections. Herein, we have developed and optimized the immunodetection conditions for a 34-antibody panel for use on human snap-frozen tissue sections. For this, we tested the performance of 80 antibodies. Moreover, we compared tissue drying times, fixation procedures and antibody incubation conditions. We observed that variations in the drying times of tissue sections had little impact on the quality of the images. Fixation with methanol for 5 min at -20 degrees C or 1% paraformaldehyde (PFA) for 5 min at room temperature followed by methanol for 5 min at -20 degrees C were superior to fixation with acetone or PFA only. Finally, we observed that antibody incubation overnight at 4 degrees C yielded more consistent results as compared to staining at room temperature for 5 h. Finally, we used the optimized method for staining of human fetal and adult intestinal tissue samples. We present the tissue architecture and spatial distribution of the stromal cells and immune cells in these samples visualizing blood vessels, the epithelium and lamina propria based on the expression of alpha-smooth muscle actin (alpha-SMA), E-Cadherin and Vimentin, while simultaneously revealing the colocalization of T cells, innate lymphoid cells (ILCs), and various myeloid cell subsets in the lamina propria of the human fetal intestine. We expect that this work can aid the scientific community who wish to improve IMC data quality.Stem cells & developmental biolog

    Shadowing in Inelastic Scattering of Muons on Carbon, Calcium and Lead at Low XBj

    Full text link
    Nuclear shadowing is observed in the per-nucleon cross-sections of positive muons on carbon, calcium and lead as compared to deuterium. The data were taken by Fermilab experiment E665 using inelastically scattered muons of mean incident momentum 470 GeV/c. Cross-section ratios are presented in the kinematic region 0.0001 < XBj <0.56 and 0.1 < Q**2 < 80 GeVc. The data are consistent with no significant nu or Q**2 dependence at fixed XBj. As XBj decreases, the size of the shadowing effect, as well as its A dependence, are found to approach the corresponding measurements in photoproduction.Comment: 22 pages, incl. 6 figures, to be published in Z. Phys.

    Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration

    Full text link
    Extensive experimental data from high-energy nucleus-nucleus collisions were recorded using the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC). The comprehensive set of measurements from the first three years of RHIC operation includes charged particle multiplicities, transverse energy, yield ratios and spectra of identified hadrons in a wide range of transverse momenta (p_T), elliptic flow, two-particle correlations, non-statistical fluctuations, and suppression of particle production at high p_T. The results are examined with an emphasis on implications for the formation of a new state of dense matter. We find that the state of matter created at RHIC cannot be described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted to Nuclear Physics A as a regular article; v3 has minor changes in response to referee comments. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    f(1)(1285) decays into a(0)(980) pi(0), f(0)(980) pi(0) and isospin breaking

    Get PDF
    We evaluate the decay width for the processes f1(1285). p 0 a0(980) and f1(1285). p 0 f0(980) taking into account that all three resonances are dynamically generated from the meson- meson interaction, the f1(1285) from K* K ¿ c. c. and the a0(980), f0(980) from p., K K and pp, K _ K, respectively. We use a triangular mechanism similar to that of.(1405). pp., which provides a decay width for f1(1285). p 0 a0(980) with a branching fraction of the order of 30%, in agreement with experiment. At the same time we evaluate the decay width for the isospin- forbidden f1(1285). p 0 f0(980), which appears when we consider different masses for the charged and neutral kaons, and show that it is much more suppressed than in the.(1405). pp. case, but gives rise to a narrow shape of the p + p- distribution similar to the one found in the eta(1405) -> pi pi eta decay

    e+e- annihilation to (pi0 pi0 gamma) and (pi0 eta gamma) as a source of information on scalar and vector mesons

    Full text link
    We present a general framework for the model-independent decomposition of the fully differential cross section of the reactions e+e- -> gamma* -> (pi0 pi0 gamma) and e+e- -> gamma* -> (pi0 eta gamma), which can provide important information on the properties of scalar mesons: f0(600), f0(980) and a0(980). For the model-dependent ingredients in the differential cross section, an approach is developed, which relies on Resonance Chiral Theory with vector and scalar mesons. Numerical results are compared to data. The framework is convenient for development of a Monte Carlo generator and can also be applied to the reaction e+e- -> gamma* -> (pi+ pi- gamma).Comment: 15 pages, 12 Figures, 4 Tables; LaTeX svjour style; update to the version accepted for publication in the European Physical Journal

    Quantum dots coordinated with conjugated organic ligands: new nanomaterials with novel photophysics

    Get PDF
    CdSe quantum dots functionalized with oligo-(phenylene vinylene) (OPV) ligands (CdSe-OPV nanostructures) represent a new class of composite nanomaterials with significantly modified photophysics relative to bulk blends or isolated components. Single-molecule spectroscopy on these species have revealed novel photophysics such as enhanced energy transfer, spectral stability, and strongly modified excited state lifetimes and blinking statistics. Here, we review the role of ligands in quantum dot applications and summarize some of our recent efforts probing energy and charge transfer in hybrid CdSe-OPV composite nanostructures

    PHIP - a novel candidate breast cancer susceptibility locus on 6q14.1

    Get PDF
    Most non-BRCA1/2 breast cancer families have no identified genetic cause. We used linkage and haplotype analyses in familial and sporadic breast cancer cases to identify a susceptibility locus on chromosome 6q. Two independent genome-wide linkage analysis studies suggested a 3 Mb locus on chromosome 6q and two unrelated Swedish families with a LOD > 2 together seemed to share a haplotype in 6q14.1. We hypothesized that this region harbored a rare high-risk founder allele contributing to breast cancer in these two families. Sequencing of DNA and RNA from the two families did not detect any pathogenic mutations. Finally, 29 SNPs in the region were analyzed in 44,214 cases and 43,532 controls from BCAC, and the original haplotypes in the two families were suggested as low-risk alleles for European and Swedish women specifically. There was also some support for one additional independent moderate-risk allele in Swedish familial samples. The results were consistent with our previous findings in familial breast cancer and supported a breast cancer susceptibility locus at 6q14.1 around the PHIP gene.Peer reviewe
    corecore