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Abstract
We evaluate the decay width for the processes f1(1285)→ π0a0(980) and f1(1285)→ π0f0(980)

taking into account that all three resonances are dynamically generated from the meson-meson

interaction, the f1(1285) from K∗K̄ − c.c and the a0(980), f0(980) from πη,KK̄ and ππ,KK̄ re-

spectively. We use a triangular mechanism similar to that of the η(1405) → ππη, which provides

a decay width for f1(1285) → π0a0(980) with a branching fraction of the order of 30%, in agree-

ment with experiment. At the same time we evaluate the decay width for the isospin forbidden

f1(1285)→ π0f0(980), which appears when we consider different masses for the charged and neu-

tral kaons, and show that it is much more suppressed than in the η(1405) → ππη case, but gives

rise to a narrow shape of the π+π− distribution similar to the one found in the η(1405) → ππη

decay.

PACS numbers: 11.80.Gw, 12.38.Gc, 12.39.Fe, 13.75.Lb
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I. INTRODUCTION

The quest for understanding the nature of recently discovered mesons and baryons is one
of the most challenging topics in hadron physics. The traditional idea that they could be
described as composite qq̄ and qqq objects has been reviewed to leave room for more complex
structures involving more quarks in some cases [1, 2]. The application of chiral dynamics
to the interaction of hadrons has had a significant success in recent years. An effective
approach to QCD at low energy is provided by Chiral Lagrangians, in which mesons and
baryons appear as fundamental degrees of freedom [3–6].

However, due to its limited range of convergence, the perturbation theory derived from
these Lagrangians, Chiral Perturbation Theory (χPT ), proved insufficient to describe the
hadron spectrum, and its non-perturbative unitary extension, called chiral unitary approach
[7–19], became necessary. This new method allows us to explain many mesons and baryons
as composite states of hadrons, among them the a0(980) and f0(980), and the f1(1285),
which are considered as dynamically generated resonances.

Throughout this work, we will consider these resonances as dynamically generated from
the interaction of two mesons, appearing as poles in the complex plane of the scattering
amplitudes. These amplitudes are obtained using the tree level meson-meson interaction
potentials, derived from the chiral Lagrangians, as a kernel for the Bethe-Salpeter equation
in coupled channels. The f1(1285) resonance appears, together with the block of axial vector
mesons, from the pseudoscalar vector interaction in I = 0, J = 0, in coupled channels. In
[20] a speed plot of the amplitude was used to identify these resonances. In [21] poles of
the amplitudes in the complex plane were searched for in order to identify the resonances.
An extension of the work of [21] including higher orders in the potential is done in cite [22],
where the results are also extrapolated to higher mπ masses to match results of eventual
QCD lattice results. In this latter work the effect of higher orders in the potential for the
f1(1285) was found negligible. Extrapolation of these ideas to the charm sector is done in
[23]. The f1(1285) resonance is peculiar in the sense that it comes from a single channel
KK̄∗. On the other hand the building blocks of the a0 and f0 are the meson pairs πη, KK̄
and ππ, KK̄ respectively [9, 24–28].

Since isospin symmetry is broken in meson rescattering due to the different masses of
charged and neutral kaons, the a0(980) and f0(980) can mix, and quantifying this mixing
can help understanding the nature of these two resonances. The topic was first discussed
in Ref. [29] and more recently in [30, 31], in which the reaction J/ψ → φπ0η was studied.
The same reaction was also studied in [32] using the chiral unitary approach, as in [31]. In
Ref. [33] the reaction χc1 → π0πη was also proposed as a test to measure the amount of
a0(980)− f0(980) mixing.

The reaction J/ψ → φπ0η was then studied at BES [34], where a narrow signal of the
order of the difference of kaon masses, in agreement with the predictions of [30, 31], was
found, with an intensity of half percent with respect to the one of J/ψ → φπ+π− in the
region of the f0(980) peak of the ππ distribution. The same experimental work reports also
on the reaction χc1 → π0ππ in the region of the f0(980), finding again a very narrow signal
with an intensity of half percent with respect to χc1 → π0πη in the a0(980) region. These
findings are within expected values for isospin violation and the narrowness of the signal
is tied to the mass difference between the kaons, which results in a difference between the
loop functions for the intermediate kaons in the rescattering leading to the production of the
a0(980) and f0(980). These results provide support to the composite meson-meson nature
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of these resonances.
In a recent paper the BES team has reported a larger isospin violation in the decay

η(1405) → π0f0(980) compared to the η(1405) → π0a0(980), about 18% [35], very difficult
to explain unless one considers the η(1405) as a mixture of I = 0 and I = 1. However, this
would lead to the production of the f0(980) with its natural width, around 50 MeV, and not
with the one of about 9 MeV observed by BES.

In Ref. [36], a particular mechanism was proposed to study these processes, consisting in
the η(1405) decaying into K∗K̄, the posterior K∗ decay into π0K and the rescattering of the
KK̄ to produce either the f0(980) and the a0(980) resonances. This leads to a triangular
loop diagram that has two cuts (singularities in the integrand), which make it different from
the standard G loop function from KK̄, with only the KK̄ on shell singularity. The final
loop function that appeared in the calculation of Ref. [36], containing the three propagators,
was divergent and needed to be regularized. In Ref. [36] Wu et al. used an unknown cutoff
or form factor to implement convergence, but then the decay rates were dependent on an
unknown parameter. The problem was solved in Ref. [37] by means of the chiral unitary
approach and it was shown that the triangular loop could be regularized with the same cutoff
used in the meson-meson interaction problem, which is a parameter fitted to the scattering
data that naturally appears in the calculation. This made possible to evaluate the ratio
of the decay rates for η′ → π0π0η and η′ → π0π+π− and the shapes of the invariant mass
distributions, which were in good agreement with experiment.

In this work we will apply the same mechanism of Refs. [36, 37] to the reactions
f1(1285) → π0π0η and f1(1285) → π0π+π−. We follow the steps of Ref. [37] and eval-
uate the branching ratio for the decay of the f1(1285) to a0π, excluding the a0(980) decay
to KK̄, in order to compare our result with the value reported in the PDG, with the aim to
give further support to the basic idea about the nature of the f1(1285), a0(980) and f0(980)
resonances.

II. FORMALISM

We want to study the decay of the f1(1285) to a0π, excluding the a0(980) decay to
KK̄, which according to the PDG [39], makes up for a sizeable fraction of the total f1(1285)
decay width of (36±7)%. In addition, we will simultaneously study the reactions f1(1285)→
a0(980)π0 and f1(1285)→ f0(980)π0 to make an estimate of the amount of a0(980)−f0(980)
mixing.

Once the dynamically generated picture for the f1(1285), a0(980) and f0(980) is assumed,
the process can be described by means of the triangular mechanism contained in the four
diagrams of Fig. 1, consisting of the f1(1285) decay to K∗K̄, the successive decay of the
K∗ into Kπ and the rescattering of the KK̄ pair leading to π0η or π+π− in the final state,
which will proceed via the a0(980) or f0(980) resonances accounted for by the KK̄ → π0η
and KK̄ → π+π− amplitudes, respectively.

A. The structure of the vertices

In order to evaluate the amplitudes of the diagrams in Fig.1, we need the structure of
the two vertices involved plus the KK̄ → π−π+(π0η) amplitude, shown in Fig. 2.
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FIG. 1. Diagrams representing the process f1(1285)→ π0η (π+π−).
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FIG. 2. Vertices involved in the decay of the f1(1285) to π0η or π+π−, the f1(1285) → K∗K̄ 1)

and the V PP vertex 2), and amplitude for a0(980) and f0(980) production 3).

As mentioned before, in Ref. [21], the f1(1285) results as dynamically generated from
the interaction of K∗K̄ − cc. We can write the vertex 1) of Fig. 2 as

− it1 = −i gf1 C1ε
µε′µ , (1)

where ε is the polarization vector of the f1 and ε′ is the polarization vector of the K∗ (K̄∗).
The coupling gf1 of the f1 to the K∗K̄ channel is obtained from the residue in the pole

of the scattering amplitude for K∗K̄ − cc in I = 0, which, in general, close to a pole and in
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the case of a single channel, can be written as

T ' g2
R

s− sR
, (2)

where sR is the position of the resonance in the complex energy plane and gR is the coupling
to the channel. The scattering amplitude T is obtained using the Bethe-Salpeter equation

T = [1− V G]−1 V , (3)

with the potential V taken from Ref. [21]. The G function in Eq. (3) is the loop function
for the propagators of the intermediate particles

G(P 2) =

∫
d4q

(2π)4

1

q2 −m2
1 + iε

1

(P − q)2 −m2
2 + iε

, (4)

where P the total four-momentum (P 2 = s) and m1, m2 the masses of the particles in the
considered channel. After the regularization by means of a cutoff [9] we get

G(s) =

∫
|~q |<qmax

d3q

(2π)3

ω1 + ω2

2ω1ω2

1

s− (ω1 + ω2)2 + iε
, (5)

with ωi =
√
|~q |+m2

i . We obtain a good description of the f1(1285) using a cutoff of about
1 GeV, as in Ref. [21].

The factors C1 in Eq. (1) are due to the fact that the f1(1285) couples to the I = 0,
C = +, G = + combination of K∗K̄ mesons, which is represented by the state

1√
2

(K∗K̄ − K̄∗K) = −1

2
(K∗+K− +K∗0K̄0 −K∗−K+ − K̄∗0K0) , (6)

where the convention CK∗ = −K∗ is taken, which is consistent with the standard chiral
Lagrangians. The different values of C1 for each diagram of Fig. 1, corresponding to the
weights of the charged and neutral components in the wave function of Eq. (6), are listed
in the second column of Table I.

The structure of the vertices of type 2) can be derived using the hidden gauge symmetry
Lagrangian describing the V PP interaction [38, 40–42], given by

LPPV = −ig 〈V µ[P, ∂µP ]〉 , (7)

where the symbol 〈〉 stands for the trace in SU(3) and g = mV

2f
, with mV ' mρ and f = 93

MeV the pion decay constant.
The P matrix in Eq. (7) contains the nonet of the pseudoscalar mesons written in the

physical basis in which η, η′ mixing is considered [43],

P =


η√
3

+ η′√
6

+ π0
√

2
π+ K+

π− η√
3

+ η′√
6
− π0
√

2
K0

K− K̄0 − η√
3

+
√

2
3
η′

 , (8)
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Diagram C1 C2 C

A) −1
2

1√
2

− 1
2
√

2

B) −1
2 − 1√

2
1

2
√

2

C) 1
2 − 1√

2
− 1

2
√

2

D) 1
2

1√
2

1
2
√

2

TABLE I. Factor C1 and C2 for the vertices 1) and 2) in Fig. 2 and for the four diagrams in Fig. 1

in the second and third column, respectively. The values of their product, C, for the four different

diagrams are listed in the fourth column.

while the V matrix contains the nonet of vector mesons,

Vµ =

 ω√
2

+ ρ0√
2

ρ+ K∗+

ρ− ω√
2
− ρ0√

2
K∗0

K∗− K̄∗0 φ


µ

. (9)

Thus, the amplitude of the vertex can be written as

− it2 = i g C2 (2k − P + q)µε
′µ , (10)

where the factors C2 for each diagram in Fig. 1 are shown in the third column of Table I.
The momenta in Eq. (10) are assigned as shown in Fig. 3.

k

P

P − q

q

P − q − k

Minv

FIG. 3. Momenta assignment for the decay process.

The KK̄ → π0η(π+π−) amplitude in Fig. 2 corresponds to the mechanism for the
production of either π0η or π+ π− in the final state. The rescattering of the KK̄ pair
dynamically generates in coupled channels the a0(980) and f0(980) resonances [9], leading,
respectively, to the π0η and π+π− pair production. However, we must keep in mind that
the f1(1285) is an I = 0 object. If isospin symmetry were an exact symmetry (or if the
kaons had the same mass), the process would only go via a0 production, which is I = 1, and
this would prevent finding the π+π− pair in the final state in s-wave (the ρ0 in p-wave is
forbidden by C-parity conservation). When the physical masses of the kaons are considered,
we have an isospin breaking effect that leads to the production of the f0 and then of the
π+π− pair.
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We will write, for simplicity, this vertex as

− it3 = −itif , (11)

where tif is the if element of the 5 × 5 scattering matrix t for the channels K+K− (1),
K0K̄0 (2), π0η (3), π+π− (4) and π0π0 (5) [9]. We have i = 1 for the diagrams A) and C)
and i = 2 for the diagrams B) and D) of Fig. 1, while the index f stands for the channel 3
or 4 depending on the meson pair in the final state. The t matrix is obtained again using
the Bethe-Salpeter equation, Eq. (3)1.

The G function in Eq. (3) is the diagonal loop function matrix for the intermediate states.
As in the case of the f1 production, the loops are regularized using the cutoff method.

A good description of the a0(980) and f0(980) is obtained using for the loop functions
a cutoff around 900 MeV. We will see in the next section that this parameter enters the
evaluation of the loop integral in the diagrams of Fig. 1.

B. The triangular loop

Putting together Eqs. (1), (10) and (11), we can explicitly write the total amplitude for
each one of the diagrams in Fig. 1 as

−it = −i C1 gf1 i C2 g

∫
d4q

(2π)4
(2k − P + q)µε

′µ εαε
′α i

q2 −m2
K + iε

× i

(P − k − q)2 −m2
K + iε

1

2ω∗(q)

i

P 0 − q0 − ω∗(q) + iε
(−itif ) ,

(12)

where ω∗(q) =
√
~q 2 +m2

K∗ is the K∗ energy. In Eq.(12) only the positive energy part of
the K∗ propagator i[(P 0− q0−ω∗)2ω∗]−1 is taken, which is a good approximation given the
large mass of the K∗.

We assume we are dealing with small three-momenta compared to the masses of the
particles involved. This means that only the spatial components of the polarization vector
of the K∗ are non vanishing,

ε′0 =
|~P − ~q |
mK∗

=
|~q |
mK∗

∼ 0 , (13)

and that the completeness relation for the polarization vectors, which reads∑
pol

ε′µε
′
α = −gµα +

(P − q)µ(P − q)α
m2
K∗

, (14)

can now be written as∑
pol

ε′µε
′
α '

∑
pol

ε′iε
′
j = δij ; µ = i, α = j; i, j = 1, 2, 3 . (15)

1 Note that in order to get the t matrix, which sums over intermediate states, the unitary normalization of

the π0π0 state implementing an extra 1√
2

factor in the normalization of the state with identical particles,

is done in the calculation [9].

7



Using Eq. (15), the amplitude reduces to

t = −i C1C2 gf1 g

∫
d4q

(2π)4
(2~k + ~q) · ~ε 1

q2 −m2
K + iε

1

(P − k − q)2 −m2
K + iε

× 1

2ω∗(q)

1

P 0 − q0 − ω∗(q) + iε
tif .

. (16)

We can further simplify Eq. (16) writing it as

t = C gf1 g~ε · ~k (2I1 + I2) tif = t̃~ε · ~k tif , (17)

where I1 and I2 are defined as

I1 = −i
∫

d4q

(2π)4

1

q2 −m2
K + iε

1

(P − k − q)2 −m2
K + iε

1

2ω∗(q)

1

P 0 − q0 − ω∗(q) + iε
,

I2 = −i
∫

d4q

(2π)4

1

q2 −m2
K + iε

~k · ~q/|~k |2
(P − k − q)2 −m2

K + iε

1

2ω∗(q)

1

P 0 − q0 − ω∗(q) + iε
.

(18)

The constant C is the product of C1 and C2 and its value depends on the diagram that we
are considering, as shown in the last column of Table I.

After analytically integrating Eqs. (18) in dq0 using Cauchy’s theorem, we obtain

I1 = −
∫

d3q

(2π)3

1

8ω(q)ω′(q)ω∗(q)

1

k0 − ω′(q)− ω∗(q) + iε

1

P 0 − ω∗(q)− ω(q) + iε

× 2P 0ω(q) + 2k0ω′(q)− 2(ω(q) + ω′(q))(ω(q) + ω′(q) + ω∗(q))

(P 0 − ω(q)− ω′(q)− k0 + iε)(P 0 + ω(q) + ω′(q)− k0 − iε) ,

(19)

I2 = −
∫

d3q

(2π)3

~k · ~q/|~k |2
8ω(q)ω′(q)ω∗(q)

1

k0 − ω′(q)− ω∗(q) + iε

1

P 0 − ω∗(q)− ω(q) + iε

× 2P 0ω(q) + 2k0ω′(q)− 2(ω(q) + ω′(q))(ω(q) + ω′(q) + ω∗(q))

(P 0 − ω(q)− ω′(q)− k0 + iε)(P 0 + ω(q) + ω′(q)− k0 − iε) ,

(20)

where ω(q) =
√
~q 2 +m2

K and ω′(q) =

√
(~q + ~k)2 +m2

K are the energies of the K (K̄) and

K̄ (K) in the loop respectively.
When performing numerically the integrations in d3q of Eqs. (19) and (20) we have to

consider that the upper limit is naturally provided, as in Ref. [37], by the chiral unitary
approach. As we already mentioned in Section II A, the loop function G used in meson meson
scattering to generate the a0(980) and f0(980) is divergent and regularized by a cutoff fitted
to the experimental data. Using this same cutoff in the triangular loop is not only natural
but also necessary if we remember that the implementation of a cutoff θ(qmax − |~q|) in the
integration of G is done in a quantum mechanical formulation which, in the case of s-waves,
makes use of a potential of the form

V (~q, ~q ′) = v θ(qmax − |~q|) θ(qmax − |~q ′|), (21)

which leads to
t(~q, ~q ′) = t θ(qmax − |~q|) θ(qmax − |~q ′|). (22)
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This means that the cutoff qmax appears automatically as the upper limit of the integrals
of Eqs. (19) and (20) thanks to the KK̄ → PP potential used to dynamically generate the
a0 and f0. Note, however, that the integrals in Eqs. (19) and (20) are already convergent
without implementing qmax. The loop also should implement the cutoff used in the evaluation
of the f1(1285) which was qmax = 1000 MeV. Hence the use of qmax = 900 MeV accounts
for both cutoffs.

Proceeding with the evaluation of the total amplitude of the reactions f1(1285)→ π0π0η
and f1(1285) → π0π+π−, we have to take into account that the neutral and charged kaons
have different physical masses. Thus, we define t̃(+) and t̃(0), corresponding to the quantity
t̃ of Eq. (17) evaluated for the masses of K+, K−, K∗+, K∗− (summing A and C of Fig. 1)
and K0, K̄0, K∗0, K̄∗0 (summing B and D of Fig. 1) respectively. This allows us to write
the total amplitudes of the processes as

Tπ0η = (2t̃(+) tK+K−→π0η + 2t̃(0) tK0K̄0→π0η)~ε · ~k ,
Tπ+π− = (2t̃(+) tK+K−→π+π− + 2t̃(0) tK0K̄0→π+π−)~ε · ~k .

(23)

From these last two equations, the role of the mass difference between neutral and charged
kaons in the isospin symmetry breaking can be clearly understood. When equal masses for
the kaons are taken, due to the fact that the global factor C in t̃ has opposite sign in the
charged and in the neutral case (see Table I), we have that t̃(0) = −t̃(+). Moreover, from
Ref. [9] we know that

tK+K−→π0η = −tK0K̄0→π0η ,

tK+K−→π+π− = tK0K̄0→π+π− .
(24)

This means that if the masses of the neutral and charged kaons were equal, the amplitude
Tπ+π− would vanish, preventing the production of the f0(980) as intermediate state, which
indeed is isospin forbidden. Since the isospin symmetry is not an exact symmetry, due to
the mass difference, the decay can go via both a0 and f0 production, leading to the π0η and
π+π− pairs in the final state.

Given the structure of Eq. (23) we define Tπ0η and Tπ+π− as

Tπ0η = T̃π0η ~ε · ~k ,
Tπ+π− = T̃π+π− ~ε · ~k .

(25)

III. RESULTS

The invariant mass distribution is given by the formula [44]

dΓ

dMinv

=
1

(2π)3

pπ |~k |
4m2

f1

1

2

∫ 1

−1

d cos θ Σ|T |2 , (26)

where the symbol Σ stands for the average over the polarizations of the f1(1285), θ is the

angle between ~k and ~ε and Minv is the invariant mass of the final interacting pair (see Fig.
3). The momenta in Eq. (26) are defined as

pπ =
λ1/2(M2

inv,m
2
π0 ,m2

η)

2Minv

(27)
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in the case of π0η in the final state (π0 momentum un the π0η rest frame) and

pπ =
λ1/2(M2

inv,m
2
π+ ,m2

π−)

2Minv

(28)

in the case of π+π− (π+ momentum un the π+π− rest frame), while

|~k | =
λ1/2(M2

f1
,m2

π0 ,M2
inv)

2mf1

(29)

is the momentum of the spectator π0 in the reference frame in which the f1(1285) is at rest.
The function λ in Eqs. (27), (28) and (29) is the Källén function.

Eq. (26) can be rewritten, after performing the integration in d cos θ, as

dΓ

dMinv

=
1

(2π)3

pπ |~k |3
4m2

f1

1

3
| T̃ |2 . (30)

FIG. 4. dΓ/dMinv for f1(1285)→ π0π0η decay as a function of Minv in the f0(980) region.

The result for dΓ/dMinv for the f1(1285) → π0π0η case is shown in Fig. 4 while in Fig.
5 we have the same plot for f1(1285)→ π0π+π−. For the same reason as in [37] we do not
symmetrize the two π0 in the π0π0η final state, since the a0 resonance is relatively narrow
and the two π0 have very distinct kinematics.

For π+π− in the final state we obtain, as in the case of Ref. [37], a narrow peak around
980 MeV. The width of the peak is unusually small, around 10 MeV, in agreement with
what was found experimentally in other reactions like the one studied by BES collaboration
[35], and it appears exactly in the f0(980) region between the two thresholds of K∗ + K−

and K0K̄0. This width is not the natural one of the f0, which is around 60 MeV, and the
shape we see in Fig. 5 is different from the usual one seen in isospin allowed reactions.
The reason for the peculiar features of this distribution can be found, as mentioned before,
in the difference in the physical masses of neutral and charged kaons. This difference, as
it can be seen in Fig. 6, is significant only in the region of energies around the two KK̄
thresholds. Far from the thresholds the difference between the two loop integrals t̃(+) and
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FIG. 5. dΓ/dMinv for f1(1285)→ π0π+π− decay as a function of Minv in the f0(980) region.

FIG. 6. Lines upper side: higher Im[t̃(0)], lower Im[t̃(+)]; lines lower side: higher Re[t̃(0)], lower

Re[t̃(+)].

t̃(0) becomes smaller, leading to the narrow shape of the invariant mass distribution for the
f0(980), already observed in the case of the reaction η(1405)→ π0f0(980).

On the other hand, the signal is much wider in the case of π0η channel. We see in Fig.
4 that the a0 is produced with its normal width since the reaction is isospin allowed. Also
the strength at the peak is much bigger than in the other case. In Fig. 7 we show the ratio
( dΓ
dMinv

)π+π−/(
dΓ

dMinv
)π0η as a function of the invariant mass and we can see that the ratio of

strength at the peak is of the order of 6%, ten times smaller than in Ref. [37] for the decay
of the η(1405). As discussed in [37], we find once again that there is not an absolute value
of the a0− f0 mixing. It depends on the particular reaction but provides extra informations
about the nature of the resonances and the reaction mechanism.

Now we proceed to the evaluation of the partial width for the decay mode of the f1(1285)
to a0(980)π. We want to compare our result with the experimental one reported in the PDG
[39]

BR(f1 → a0π)|exp = (36 ± 7)% , (31)

ignoring the a0(989)→ KK̄ decay.
In order to do it, we need to take into account all the three possible final states, a+

0 π
−,

a0
0π

0, a−0 π
+. However, the state of I = 0 coming from the interaction of two I = 1 particles

11



FIG. 7. Ratio ( dΓ
dMinv

)π+π−/(
dΓ

dMinv
)π0η as a function of Minv.

is given by

|I = 0, I3 = 0〉 =
1√
3
|1, 1〉 − 1√

3
|1, 0〉+

1√
3
|1,−1〉 , (32)

which means that the three final states appear with the same weight. Thus, we can restrict
the calculation to the diagrams in Fig. 1 and then multiply the result by a factor three to
take into account the three charges. We find

Γa0π = 3

∫
dMinv

( dΓ

dMinv

)
π0η

= 7.6 MeV , (33)

with
(

dΓ
dMinv

)
π0η

given by Eq. (30), which corresponds to a branching ratio

BR(f1 → a0π)|th ' 31% , (34)

in good agreement with the experimental value.
We have made an estimate of the error on this result considering two possible sources of

uncertainties. The first one is the cutoff in the meson-meson loop function used in Eq. (3)
to generate the f1(1285), that we have taken around 1000 MeV. The value of the coupling
gf1 used in the decay amplitude of Eq. (17) depends a bit on the cutoff. Changing its value
by ±20 MeV, the resonance is still well reproduced and its position moved by only 10 MeV.
This changes the value of the coupling gf1 by 2.5%, leading to the same uncertainty on the
final result for Γa0π. The other source of uncertainty is the cutoff qmax used as upper limit
in the loop integral of the decay. We make again a variation of ±20 MeV, which moves the
a0(980) and f0(980) peak in the scattering amplitude of 8 MeV. This induces a change in
the value of Γa0π of 1.5%, which gives, summed to the uncertainty coming from the other
source, 

Γtha0π = (7.6± 0.3) MeV ,

BR(f1 → a0π)|th = (31.4± 1.2)% .

(35)
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The ratio of integrated strengths over the invariant mass in the region of the a0(980) and
f0(980) for the reactions f1(1285)→ π0π0η and f1(1285)→ π0π+π− gives

Γ(π0, π+π−)

Γ(π0, π0η)
= 0.82× 10−2, (36)

Γ(π0, f0(980))

Γ(π0a0(980))
= 1.28× 10−2, (37)

where we have taken into account that the rate of f1(1285)→ π0π+π− is twice the amount
of f1(1285)→ π0π0π0.

This is much smaller than what was found for the η(1405) decay, Γ(η(1405)→π0f0(980))
Γ(η(1405)→π0a0(980))

=

18× 10−2 [35], and twice as big as found for the J/ψ decay, Γ(J/ψ→φf0(980))
Γ(J/ψ→φa0(980))

= 0.6× 10−2 [34].

IV. CONCLUSIONS

We have evaluated the decay width of the f1(1285) → π0π0η, which shows a prominent
peak in the a0(980) resonance region. We use the picture in which the f1(1285) is dynamically
generated from the vector-pseudoscalar interaction in the KK̄∗−c.c. channel and the a0(980)
from the πη,KK̄ channels. The mechanism for the decay consists in the triangular diagram
of the f1(1285) decaying into K∗K̄− c.c. and the K∗(K̄∗) decaying into K(K̄)π, followed by
the rescattering of the KK̄ system. We find that the mechanism, which we can evaluate in
absolute terms, provides a large branching fraction for the f1(1285) decay of about 30%, in
agreement with experiment. At the same time we evaluate the f1(1285) → π0π+π− decay
rate, through the same mechanism, but with the KK̄ scattering to produce π+π−. This
last process is isospin forbidden, and gives zero in our approach if we consider equal masses
for the charged and neutral kaons. When physical masses are used, then isospin is slightly
violated and we find a prominent peak, albeit with small intensity, in the f0(980) region.
The width of this peak is found narrow, like in the η(1405) → ππη which was measured
experimentally, and does not reflect the natural width of the f0(980) resonance but simply the
region where the mass difference of the charged and neutral kaons is appreciable compared
to the value of their masses. We find that the shape obtained is similar to the one found
in the η(1405) → π0π+π− and J/ψ → φπ0η, but the amount of isospin breaking is quite
different to either reaction, showing once more that the concept of a universal mixing of
the f0(980)-a0(980) is not adequate, and the nature of these resonances as dynamically
generated makes the isospin mixing very strongly dependent on the physical process. The
measurement of the f1(1285) → π0π+π− decay and comparison with our predictions can
serve to provide extra support for the picture in which the f1(1285), f0(980) and a0(980)
resonances are dynamically generated.
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